Answer:
the width is 10 m
Step-by-step explanation:
if the relationship between area and width is
A = 80*w − w²
for an area A=700 m² , we have
700 m² = 80*w − w²
w² - 80*w + 700 m² = 0
aw² + b*w + c = 0
where a=1 , b=-80 and c=700
this quadratic equation has as solution the following formula
w = [-b ± √ ( b² - 4*a*c) ]/(2*a)
replacing values
w = [80 ± √ ( 80² - 4*1*700) ]/(2*1) = (80 ± 60)/2
then
w₁=(80 - 60)/2 = 10 m
w₂ =(80 + 60)/2 = 70 m
since the area has the form A= length * width = 80*w − w² = (80− w)*w
then the length of the rectangle is
length = 80− w
for w₁=10 m → length = 80− 10 = 70 m
for w₁=70 m → length = 80− 70 = 10 m
by definition the shorter side is the width ( and the longer one , the length) , therefore the only possible option is the first one .
Thus the width is 10 m
Answer:
bx=-3
Step-by-step explanation:
-2(bx-5)=16
Use distributive property.
-2bx+10=16
Now, subtract 10 from both sides.
-2bx=6
Divide -2 from both sides.
bx=-3
Hope this helps!
If not, I am sorry.
Based on my knowledge Radius and Diameter are not part of a pyramid.
ar(ΔABO) = ar(ΔCDO)
Explanation:
The image attached below.
Given ABCD is a trapezoid with legs AB and CD.
AB and CD are non-parallel sides between the parallels AD and BC.
In ΔABD and ΔACD,
We know that, triangles lie between the same base and same parallels are equal in area.
⇒ AD is the common base for ΔABD and ΔACD and they are lie between the same parallels AD and BC.
Hence, ar(ΔABD) = ar(ΔACD) – – – – (1)
Now consider ΔABO and ΔCDO,
Subtract ar(ΔAOD) on both sides of (1), we get
ar(ΔABD) – ar(ΔAOD) = ar(ΔACD) – ar(ΔAOD)
⇒ar(ΔABO) = ar(ΔCDO)
Hence, ar(ΔABO) = ar(ΔCDO).
9514 1404 393
Answer:
- vertical shift: 7 (up)
- horizontal shift: 2 (right)
- vertical asymptote: x=2
- domain: x > 2
- range: all real numbers
Step-by-step explanation:
For any function f(x), the transformation f(x -h) +k represents a horizontal shift of h units to the right and k units upward.
Here, the parent function is log₂(x) and the transformation to log₂(x -2) +7 represents translation 2 units right and 7 units upward.
The parent function has a vertical asymptote at x=0, so the shifted function will have a vertical asymptote at x-2=0, or x = 2.
The parent function has a domain of x > 0, so the shifted function will have a domain of x-2 > 0, or x > 2.
The parent function has a range of "all real numbers." Shifting the function vertically does not change that range. The range of the shifted function is still "all real numbers."
The graph is shown below. The vertical asymptote is the dashed orange line.
_____
The "work" is in matching the pattern f(x -h) +k to the function log₂(x -2) +7.