Answer:
Well, you will need to see how this fungus looks like. I would say it is a green, black, and brown color and it would be classified as an mold type fungus.
If the inner lining of the air sacs neither thin nor highly vascularized, then it can be inferred that AIR SACS ARE CANNOT BE THE SITES OF GASEOUS EXCHANGE BETWEEN AIR AND BLOOD. Air sacs are generally lined with mucus and surrounded with blood capillaries.
In case of birds, air sacs play an important role in respiratory system.
When the bread and butter is in mouth, mechanical digestion starts. The size of the food gets reduced and it mixes with saliva for easy swallowing. The salivary amylase in saliva begins the digestion of starch in the bread. This is the start of chemical digestion. When the undigested bread and butter reached the stomach, lower esophageal sphincter relaxes and allow the chewed food to enter. The gastric secretions containing HCl, acts on the undigested food to produce chime. HCl kill the microorganism on the food and also denatures the protein and later attacked by digestive enzyme pepsin. Pepsin breakdown protein in the bread, butter . Later on gastric lipase begins to digest fat present in butter. Digestion of the starch in bread does not occur in the stomach because the salivary amylase that began chemical digestion in mouth became inactive in the presence of HCl. Further the chime enters the small intestine where bile secreted by the gall bladder emulsifies the fat and break into small globule which helps in fat absorption.
The energy released is used for assembly of actin filament with myosin head. when myosin is attached to ATP its heads cannot bind to actin and therefore muscle will remain in relaxed form. However during muscle contraction an enzyme referred to as ATPase hydrolyses ATP to ADP and organic phosphate in the process releasing energy. The energy released changes the position of head of myosin which facilatate its binding with actin. Myosin moves towards m-line dragging actin along with it reducing the length of sarcomere leading to muscle contraction.
<span>Antidiuretic hormone (ADH) is primarily regulated by the changes in plasma osmolarity. Any alteration in the plasma osmolarity is sensed by the osmoreceptors, which are the neurons present in the hypothalamus. They then, stimulate the secretion of ADH.</span>