1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
2 years ago
14

<CAB=<CDE,AC=4cm, DC=5cm andDE=7cm. Determine thelength of sides AB of∆ABC.​

Mathematics
1 answer:
Degger [83]2 years ago
3 0

this is the answer you can try it to see if it works

You might be interested in
What is the next odd number after 160 to which 9 would divide without a reminder
ale4655 [162]
Ok so one way is to list the multiplues of 9 close to thtat
first use a caltulator to find out how much more we need
160/9=17.777777
that is 17.7777 nine's
so round up
18
18 is even
odd times even=even
18 must be odd
18+1=19
9 times 19=171
the answer is 171
7 0
3 years ago
Read 2 more answers
Brittany is making trays of fudge. Her recipe calls for 2/3 cup of walnuts for each batch of fudge . How many cups of walnut doe
aleksley [76]

Answer:

maybe 18

Step-by-step explanation:

3 0
3 years ago
How many storages per hour and retrievals per hour can each s/r handle without being utilized g?
MrRissso [65]
The size of any video depends on resolution of video, FPS and Audio Quality too. Uncompressed 1080p video of is 120–130mb per minute average
5 0
2 years ago
What is the value of angle marked with x
kipiarov [429]

Answer:

116

Step-by-step explanation:

they are the same bc its a rohmbus

6 0
3 years ago
Return to the credit card scenario of Exercise 12 (Section 2.2), and let C be the event that the selected student has an America
Nadya [2.5K]

Answer:

A. P = 0.73

B. P(A∩B∩C') = 0.22

C. P(B/A) = 0.5

   P(A/B) = 0.75

D. P(A∩B/C) = 0.4

E. P(A∪B/C) = 0.85

Step-by-step explanation:

Let's call A the event that a student has a Visa card, B the event that a student has a MasterCard and C the event that a student has a American Express card. Additionally, let's call A' the event that a student hasn't a Visa card, B' the event that a student hasn't a MasterCard and C the event that a student hasn't a American Express card.

Then, with the given probabilities we can find the following probabilities:

P(A∩B∩C') = P(A∩B) - P(A∩B∩C) = 0.3 - 0.08 = 0.22

Where P(A∩B∩C') is the probability that a student has a Visa card and a Master Card but doesn't have a American Express, P(A∩B) is the probability that a student has a has a Visa card and a MasterCard and P(A∩B∩C) is the probability that a student has a Visa card, a MasterCard and a American Express card. At the same way, we can find:

P(A∩C∩B') = P(A∩C) - P(A∩B∩C) = 0.15 - 0.08 = 0.07

P(B∩C∩A') = P(B∩C) - P(A∩B∩C) = 0.1 - 0.08 = 0.02

P(A∩B'∩C') = P(A) - P(A∩B∩C') - P(A∩C∩B') - P(A∩B∩C)

                   = 0.6 - 0.22 - 0.07 - 0.08 = 0.23

P(B∩A'∩C') = P(B) - P(A∩B∩C') - P(B∩C∩A') - P(A∩B∩C)

                   = 0.4 - 0.22 - 0.02 - 0.08 = 0.08

P(C∩A'∩A') = P(C) - P(A∩C∩B') - P(B∩C∩A') - P(A∩B∩C)

                   = 0.2 - 0.07 - 0.02 - 0.08 = 0.03

A. the probability that the selected student has at least one of the three types of cards is calculated as:

P = P(A∩B∩C) + P(A∩B∩C') + P(A∩C∩B') + P(B∩C∩A') + P(A∩B'∩C') +              

     P(B∩A'∩C') + P(C∩A'∩A')

P = 0.08 + 0.22 + 0.07 + 0.02 + 0.23 + 0.08 + 0.03 = 0.73

B. The probability that the selected student has both a Visa card and a MasterCard but not an American Express card can be written as P(A∩B∩C') and it is equal to 0.22

C. P(B/A) is the probability that a student has a MasterCard given that he has a Visa Card. it is calculated as:

P(B/A) = P(A∩B)/P(A)

So, replacing values, we get:

P(B/A) = 0.3/0.6 = 0.5

At the same way, P(A/B) is the probability that a  student has a Visa Card given that he has a MasterCard. it is calculated as:

P(A/B) = P(A∩B)/P(B) = 0.3/0.4 = 0.75

D. If a selected student has an American Express card, the probability that she or he also has both a Visa card and a MasterCard is  written as P(A∩B/C), so it is calculated as:

P(A∩B/C) = P(A∩B∩C)/P(C) = 0.08/0.2 = 0.4

E. If a the selected student has an American Express card, the probability that she or he has at least one of the other two types of cards is written as P(A∪B/C) and it is calculated as:

P(A∪B/C) = P(A∪B∩C)/P(C)

Where P(A∪B∩C) = P(A∩B∩C)+P(B∩C∩A')+P(A∩C∩B')

So, P(A∪B∩C) = 0.08 + 0.07 + 0.02 = 0.17

Finally, P(A∪B/C) is:

P(A∪B/C) = 0.17/0.2 =0.85

4 0
3 years ago
Other questions:
  • What is the exponential form of ln(13x)
    8·2 answers
  • Which is the graph of 2x - 4y &gt; 6?
    5·1 answer
  • Write the standard form of the line that contains a slope of 2/3 and passes through the point (1, 1). Include your work in your
    12·1 answer
  • A game uses the two spinners shown in the image. What is the probability that you will spin "East" and "1"
    14·2 answers
  • If the probability that it will rain tomorrow is 1/5, what is the probability that it will not rain tomorrow? A 4/5 B 3/5 C 2/5
    15·2 answers
  • Pls I need help with this
    11·1 answer
  • PLEASE HELP what is the vertex of the parabola? y + 1 = -1/4(x - 2)^2
    6·1 answer
  • The difference of two positive numbers is 69. The quotient obtained on dividing one by the other is 4. Find the number.​
    5·1 answer
  • Sketch graph of the function
    5·1 answer
  • Solve ..................
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!