The answer would be C. (12 x 5) - (s x 2) = 38.
This is because if there are 12 students with 5 pencils per student, we can say 12 x 5. Then, think of the phrase, two pencils lost per student. That would be 2s, or (s x 2). Since it’s lost, we would subtract that amount from 12 x 5.
To check which ordered pair (point) is in the solution set of the system of given linear inequalities y>x, y<x+1; we just need to plug given points into both inequalities and check if that point satisfies both inequalities or not. If any point satisfies both inequalities then that point will be in solution.
I will show you calculation for (5,-2)
plug into y>x
-2>5
which is clearly false.
plug into y<x+1
-2<5+1
or -2<6
which is also false.
hence (5,-2) is not in the solution.
Same way if you test all the given points then you will find that none of the given points are satisfying both inequalities.
Hence answer will be "No Solution from given choices".

There are 2 roots so the only way to complete the square is,
![y=2x^2+8x-9\\y=2[(x^2+4x)]-9\\y=2[(x^2+4x+4)-4]-9\\y=2[(x+2)^2-4]-9\\y=2(x+2)^2-8-9\\y=2(x+2)^2-17](https://tex.z-dn.net/?f=y%3D2x%5E2%2B8x-9%5C%5Cy%3D2%5B%28x%5E2%2B4x%29%5D-9%5C%5Cy%3D2%5B%28x%5E2%2B4x%2B4%29-4%5D-9%5C%5Cy%3D2%5B%28x%2B2%29%5E2-4%5D-9%5C%5Cy%3D2%28x%2B2%29%5E2-8-9%5C%5Cy%3D2%28x%2B2%29%5E2-17)
Just factor 2 out of 2x^2+8x (just ignore the -9) then find the number that will make the terms be able to complete the square.
then complete the square and multiply 2 inside the brackets.
subtraction as you already get the vertex form and know how to complete the square.
Vertex Form: 
It is less than 324.21, because as you can see, all the numbers are equal until you get to the 0 & 1, and 1 is greater than 0
Answer:
D.
Step-by-step explanation:
The answer is D) -25n-2