1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
9

Which ordered pairs are in the solution set of the system of linear inequalities? y > x y < x + 1 (5, –2), (3, 1), (–4, 2)

(5, –2), (3, –1), (4, –3) (5, –2), (3, 1), (4, 2) (5, –2), (–3, 1), (4, 2)
Mathematics
2 answers:
frosja888 [35]3 years ago
6 0

Answer:

No ordered pair.

Step-by-step explanation:

Given: System of linear inequality

y>x

y<x + 1

We need to find out ordered pair which are solution set of system of linear inequality.

We have to check each one

Option 1: False

Ordered pair       y>x     Conclusion     y<x+1     Conclusion       Solution    

   (5,-2)              -2>5         False          -2<5+1        True                  No

   (3,1)                  1>3         False            1<3+1         True                  No

   (-4,2)              2>-4         True             2<-4+1       False                 No

Option 2: False

Ordered pair       y>x     Conclusion     y<x+1     Conclusion       Solution    

   (5,-2)              -2>5         False          -2<5+1         True                  No

   (3,-1)                -1>3         False           -1<3+1         True                  No

   (4,-3)              -3>4         False           -3<4+1         True                 No

Option 3: False

Ordered pair       y>x     Conclusion     y<x+1     Conclusion       Solution    

   (5,-2)              -2>5         False          -2<5+1         True                  No

   (3,1)                  1>3         False             1<3+1         True                  No

   (4,2)                2>4         False            2<4+1         True                 No

Option 4: False

Ordered pair       y>x     Conclusion     y<x+1     Conclusion       Solution    

   (5,-2)              -2>5         False          -2<5+1         True                  No

   (-3,1)                1>-3         True            1<-3+1         False                 No

   (4,2)                2>4         False            2<4+1         True                 No

No any ordered pair for system for linear equality.

steposvetlana [31]3 years ago
5 0

To check which ordered pair (point) is in the solution set of the system of given linear inequalities y>x, y<x+1; we just need to plug given points into both inequalities and check if that point satisfies both inequalities or not. If any point satisfies both inequalities then that point will be in solution.

I will show you calculation for (5,-2)

plug into y>x

-2>5

which is clearly false.

plug into y<x+1

-2<5+1

or -2<6

which is also false.

hence (5,-2) is not in the solution.

Same way if you test all the given points then you will find that none of the given points are satisfying both inequalities.

Hence answer will be "No Solution from given choices".

You might be interested in
Two numbers have a difference of 8 what is the minimum product of these numbers
Nady [450]

Answer:

4

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
(EASY)(BRAINLIEST)Which of the four angles marked on the picnic table is obtuse?
Nataly [62]
The angle that is obtuse is 1, because it is greater than 90°.

Hope this helps and have a nice day:)
4 0
3 years ago
Read 2 more answers
How do I find these equations using substitution y=-3x+5 and 5x-4y=-3 ?
lapo4ka [179]

Answer:

x=1

Step-by-step explanation:

you would change it to 5x-4(-3x+5)=-3, because you put the info for the first equation into the second equation.

5x-4(-3x+5)=-3

5x+12x-20=-3

17x-20=-3

17x=17

x=1

6 0
3 years ago
Read 2 more answers
A variable is normally distributed with mean 6 and standard 2 deviation .
Tju [1.3M]

The normal distribution is also known as the Gaussian distribution. The percentage of all possible values of the variable that are less than 4 is 15.87%.

<h3>What is a normal distribution?</h3>

The normal distribution, also known as the Gaussian distribution, is a symmetric probability distribution about the mean, indicating that data near the mean occur more frequently than data distant from the mean. The normal distribution will show as a bell curve on a graph.

A.) The percentage of all possible values of the variable that lie between 5 and 9.

P(5<X<9) = P(X<9) - P(5<X)

               = P(z<1.5) - P(-0.5<z)

               = 0.9332 - 0.3085

               = 0.6247

               = 62.47%

B.) The percentage of all possible values of the variable that exceed 1.

P(X>1) = 1 - P(X<-2.5)

          = 1-0.0062

          = 0.9938

          = 99.38%

C.) The percentage of all possible values of the variable that are less than 4.

P(X<4) = P(X <4)

           = P(z<-1)
           = 0.1587

           = 15.87%

Learn more about Normal Distribution:

brainly.com/question/15103234

#SPJ1

8 0
2 years ago
The point P(1,1/2) lies on the curve y=x/(1+x). (a) If Q is the point (x,x/(1+x)), find the slope of the secant line PQ correct
lukranit [14]

Answer:

See explanation

Step-by-step explanation:

You are given the equation of the curve

y=\dfrac{x}{1+x}

Point P\left(1,\dfrac{1}{2}\right) lies on the curve.

Point Q\left(x,\dfrac{x}{1+x}\right) is an arbitrary point on the curve.

The slope of the secant line PQ is

\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{\frac{x}{1+x}-\frac{1}{2}}{x-1}=\dfrac{\frac{2x-(1+x)}{2(x+1)}}{x-1}=\dfrac{\frac{2x-1-x}{2(x+1)}}{x-1}=\\ \\=\dfrac{\frac{x-1}{2(x+1)}}{x-1}=\dfrac{x-1}{2(x+1)}\cdot \dfrac{1}{x-1}=\dfrac{1}{2(x+1)}\ [\text{When}\ x\neq 1]

1. If x=0.5, then the slope is

\dfrac{1}{2(0.5+1)}=\dfrac{1}{3}\approx 0.3333

2. If x=0.9, then the slope is

\dfrac{1}{2(0.9+1)}=\dfrac{1}{3.8}\approx 0.2632

3. If x=0.99, then the slope is

\dfrac{1}{2(0.99+1)}=\dfrac{1}{3.98}\approx 0.2513

4. If x=0.999, then the slope is

\dfrac{1}{2(0.999+1)}=\dfrac{1}{3.998}\approx 0.2501

5. If x=1.5, then the slope is

\dfrac{1}{2(1.5+1)}=\dfrac{1}{5}\approx 0.2

6. If x=1.1, then the slope is

\dfrac{1}{2(1.1+1)}=\dfrac{1}{4.2}\approx 0.2381

7. If x=1.01, then the slope is

\dfrac{1}{2(1.01+1)}=\dfrac{1}{4.02}\approx 0.2488

8. If x=1.001, then the slope is

\dfrac{1}{2(1.001+1)}=\dfrac{1}{4.002}\approx 0.2499

7 0
3 years ago
Other questions:
  • Radiochemical techniques are useful in estimating the solubility product of many compounds. In one experiment, 70.0 mL of 0.030
    14·1 answer
  • John rides his bike with a constant speed of 20 km/h. How far can he travel in 2 1/2 hours?
    12·1 answer
  • Simplify radicals Problems attached please help!!!
    11·1 answer
  • Solve square root of x+3 = 2
    6·2 answers
  • A function will have at most, one y-intercept.<br> O True<br> O False<br> Please answer ASAP thanks
    14·2 answers
  • A florist uses 5 red roses for every 2 white
    5·2 answers
  • Jade buys a blouse and a skirt for 34 of their original price. She pays a total of $31.50 for the two items. If the original pri
    12·1 answer
  • I’ll give brainliest!! please help and answer correctly! plsss answer quick
    10·2 answers
  • Solve the system of equation -5y + 4x=49 7y + 2x = -23
    6·1 answer
  • PLEASE ANSWE
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!