Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
The answer is 8and 10 when you divided is 0.8
Y = 6 + x
We can use this equation to find the total amount of flour that Otto used in the recipe.
The constraints on 'x' and 'y' are that they must both be positive, because we cannot have a negative amount of flour.
<span>And a restraint something like 50 cups of flour total because one person making a recipe won't use that many cups of flour.</span>
<span>n = 5
The formula for the confidence interval (CI) is
CI = m ± z*d/sqrt(n)
where
CI = confidence interval
m = mean
z = z value in standard normal table for desired confidence
n = number of samples
Since we want a 95% confidence interval, we need to divide that in half to get
95/2 = 47.5
Looking up 0.475 in a standard normal table gives us a z value of 1.96
Since we want the margin of error to be ± 0.0001, we want the expression ± z*d/sqrt(n) to also be ± 0.0001. And to simplify things, we can omit the ± and use the formula
0.0001 = z*d/sqrt(n)
Substitute the value z that we looked up, and get
0.0001 = 1.96*d/sqrt(n)
Substitute the standard deviation that we were given and
0.0001 = 1.96*0.001/sqrt(n)
0.0001 = 0.00196/sqrt(n)
Solve for n
0.0001*sqrt(n) = 0.00196
sqrt(n) = 19.6
n = 4.427188724
Since you can't have a fractional value for n, then n should be at least 5 for a 95% confidence interval that the measured mean is within 0.0001 grams of the correct mass.</span>
Answer:
dodecagon
Step-by-step explanation: