9. The sum of two numbers is 25 and whose product is 156. find the two numbers.
2 answers:
Answer:
x = 12
y = 13
Step-by-step explanation:
Let's assume the two numbers as x and y.
The sum of the two numbers is 25
So,
The product of the two numbers is 156
- xy = 156
- x(25 - x) = 156
- 25x - x² = 156
- x² - 25x + 156 = 0
- x² - 13x - 12x - 156 = 0
- (x - 12) • (x - 13) = 0
- x - 13 = 0
- x = 13
- x - 12 = 0
- x = 12
Hence, the two numbers are 13 and 12.
Example: we have to find 2 number : a and b
- a + b = 25 ⇒ a = 25 - b (1)
- a × b = 156 ⇒ a = 156/b (2)
(1)(2) ⇒ 156/b = 25 - b
⇒ 156/b - 25 + b = 25 - b - 25 + b
⇒ b - 25 + 156/b = 0
⇒ (b - 25 + 156/b) × b = 0 × b = 0
⇒ b² - 25b + 156 = 0
⇒ b² - (13b + 12b) + 156 = 0
⇒ b² - 13b - 12b + 156 = 0
⇒ (b² - 13b) + (- 12b + 156) = 0
⇒ b(b - 13) - 12(b - 13) = 0
⇒ (b - 13)(b - 12) = 0
⇒ b = 13 or b = 12
- if b = 12 => a = 25 - 12 = 13
- if b = 13 => a = 25 - 13 = 12
Answer: 12 and 13
OK done. Thank to me :>
You might be interested in
Answer:
B. I think
Step-by-step explanation:
Answer: A)
The first one because the x don’t repeat
Answer:
5 1/2 hours
Step-by-step explanation:
by a factor of 5 means times 4
6*4=24
22/4=5.5 hours
![7(\frac{9}{4}x- \frac{18}{7})= -\frac{5}{21} +\frac{17}{7}x \frac{63}{4}x-18 =-\frac{5}{21}+ \frac{17}{7}x\\ \frac{63}{4}x - \frac{17}{7}x = 18-\frac{5}{21}\frac{373}{28} =\frac{373}{21} x=\frac{4}{3}](https://tex.z-dn.net/?f=7%28%5Cfrac%7B9%7D%7B4%7Dx-%20%5Cfrac%7B18%7D%7B7%7D%29%3D%20-%5Cfrac%7B5%7D%7B21%7D%20%2B%5Cfrac%7B17%7D%7B7%7Dx%20%20%3C%3D%3E%20%5Cfrac%7B63%7D%7B4%7Dx-18%20%3D-%5Cfrac%7B5%7D%7B21%7D%2B%20%5Cfrac%7B17%7D%7B7%7Dx%5C%5C%20%3C%3D%3E%5Cfrac%7B63%7D%7B4%7Dx%20-%20%20%5Cfrac%7B17%7D%7B7%7Dx%20%3D%2018-%5Cfrac%7B5%7D%7B21%7D%3C%3D%3E%5Cfrac%7B373%7D%7B28%7D%20%3D%5Cfrac%7B373%7D%7B21%7D%20%3C%3D%3Ex%3D%5Cfrac%7B4%7D%7B3%7D)
ok done. Thank to me :>
Answer:
the answer is $99.49
Step-by-step explanation:
30 percent of $74.99 is $24.50
74.99 + 24.50 = $99.49
<h2>Mark Me Brainliest Please</h2>