
![\begin{gathered} \\ \\ \quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + 4 \div 2 \bigg] \div \bigg[8 \div \bigg( - 8 \bigg) + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%20%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%204%20%5Cdiv%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B8%20%5Cdiv%20%20%5Cbigg%28%20-%208%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
According to the "BODMAS rule" firstly performing "division".
![\begin{gathered} \\ \\ \quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + \dfrac{4}{2} \bigg] \div \bigg[ \dfrac{8}{ - 8} + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%20%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%5Cdfrac%7B4%7D%7B2%7D%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%5Cdfrac%7B8%7D%7B%20-%208%7D%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + \cancel{\dfrac{4}{2}} \bigg] \div \bigg[ \: \cancel{\dfrac{8}{ - 8}} + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%20%5Ccancel%7B%5Cdfrac%7B4%7D%7B2%7D%7D%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%5C%3A%20%5Ccancel%7B%5Cdfrac%7B8%7D%7B%20-%208%7D%7D%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + 2 \bigg] \div \bigg[ - 1 + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20-%201%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
Now, performing "addition and opening round brackets".
![\begin{gathered} \\ \\\quad\dashrightarrow{\sf \bigg[ - 17 + 2 \bigg] \div \bigg[ - 1 + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20-%2017%20%2B%20%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20-%201%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \: - 15 \: \: \bigg] \div \bigg[ \: \: 3\: \: \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%20%5C%3A%20%20-%2015%20%5C%3A%20%20%5C%3A%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%20%5C%3A%20%20%5C%3A%20%203%5C%3A%20%20%5C%3A%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
Now, opening "square brackets".

Now, "dividing 15 by 3".




∴ The Answer is -5.



<u>BODMAS</u> rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.
It stands for :-
- ↠ B - Brackets,
- ↠ O - Order of powers or roots,
- ↠ D - Division,
- ↠ M - Multiplication
- ↠ A - Addition,
- ↠ S - Subtraction.
It means that expressions having multiple operators need to be simplified from left to right in this order only.


First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.
- ↠ Addition (+)
- ↠ Subtraction (-)
- ↠ Multiplication (×)
- ↠ Division (÷)
- ↠ Brackets ( )
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
So assuming that the only had 3+6=9 tiles
what we have to do it find teh area total
area=legnth times width
3 tiles are 3 and 1/2 times 3
3 times 3 and 1/2=10 and 1/2
times 3 tiles
10 and 1/2 times 3=31 and 1/2 squar inches
6 tiles are 4 by 3 and 1/4
4 times 3 and 1/4=13
6 tiles times 13 inchessquare=78
so we add
31 and 1/2+78=109 and 1/2 square inches
It’s will take him 12 days
Because 1 x 12 equals 12
Answer:
Option A and C
Step-by-step explanation:
From the data given above, with a p value of 0.039 which is way less than 0.05, and with a less p value, the results are statistically significant and then we can reject the null hypothesis and conclude that the the is statistically significant evidence to show that the proportion of students with student loan debt does not equal 69%.