Answer:
Cellular membranes or plasma membranes has many functions. Some of these include regulation of cellular transport, and responding to cellular signals or hormones.
<h2>Cellular Transport</h2>
The plasma membrane is made up of the <u>phospholipid bilayer with embedded transmembrane proteins</u>. This makes the cell membrane <u>semi-permeable</u>. Movements of substances depend on the composition of the molecules e.g. glucose and amino acids, as needed by the pancreatic cells. These are larger and uncharged molecules and can't pass freely through the membrane so they utilize the transmembrane proteins via attaching to carrier proteins. This is called <em>passive transport</em>. On the other hand, in <em>active transport</em>, <u>ATP is used</u> to transfer molecules, like Hydrogen, from a low to high electrochemical gradient.
Other kinds of cellular transport are:
- Osmosis and diffusion
- Endocytosis
- Exocytosis
<h2>Cellular Signalling</h2>
The cell membrane is able to signal other neighboring cells by utilizing complex proteins. These proteins may take form as receptors or markers.
<h3>Membrane Receptors</h3>
They act as receivers of extracellular signals and spark intracellular processes. These receive signals from hormones, growth factors, etc.
<h3>
Membrane Markers </h3>
These allow the cells to identify each other and respond if this cell is needs further development as in organ development, or a foreign body to the system.
Answer:
Explanation:
The host's immune response to the transplanted graft, which is commonly exhibited as pericapsular fibrotic overgrowth (PFO), is one of the key causes of defective encapsulated islets in (PFO).PFO creates a barrier upon this capsule surface that inhibits and impedes oxygen and nutrients from entering, resulting in islet cell deprivation, hypoxia, and/or death. This host immune response was missing under in vitro circumstances, which explains why glucose sensing and insulin release were more efficient than in vivo circumstances. Nonetheless, utilizing nanoporous encapsulation or modifying the microcapsular shape and geometry can solve these issues.
Answer:
An autotroph is an organism that can produce its own food using light, water, carbon dioxide, or other chemicals. (Draw a plant and this is tghe one you underline)
A heterotroph is an organism that eats other plants or animals for energy and nutrients. (You can draw a dog, cat, frog or a person)
Answer: Genetic variation within a species can result from a few different sources. Mutations, the changes in the sequences of genes in DNA, are one source of genetic variation. ... As a result, the tree-colored moths are more likely to survive, reproduce, and pass on their genes.
Explanation:
Answer:
i think it is c on edginuidty
Explanation: