The answer is insulin people who need this are diabetic
Answer:
A) 300
B) 3:1
C) 9 long yellow : 3 long green : 3 short yellow : 1 short green
Explanation:
Long stems (L_) are dominant to short stems (ll)
Yellow seeds (Y_) are dominant to green seeds (yy)
We interbred pea plants with long stems and yellow seeds (L_Y_), but they had a short green parent (llyy) that could have only produced <em>ly</em> gametes, so our plants are heterozygous <em>LlYy</em>.
C) We interbred them LlYy x LlYy. If the two genes are unlinked, this is a typical dihybrid cross and from Mendel's law of independent assortment we know that the offspring will have the following phenotypic ratios:
- 9/16 L_Y_ (Long, yellow)
- 3/16 L_yy (Long, green)
- 3/16 llY_ (short, yellow)
- 1/16 llyy (short, green)
A) 3/16 × 1600 = 300 plants will be long and green.
B)
9/16 + 3/16 = 12/16= 3/4 plants will be yellow;
3/16 + 1/16 = 4/16= 1/4 plants will be green.
The ratio will be 3 yellow : 1 green
Answer:
D. GGACCGTCGATCCTT
Explanation:
Mutation refers to any change in the nucleotide sequence of a gene. Mutation can be of different types depending on how it occurs. According to the question, an INVERSION mutation is a type of mutation in which a segment of a gene gets broken off and reattached in another way on the same DNA. Hence, the only change in inversion mutation is the arrangement of the nucleotide bases on the gene.
Considering the nucleotide sequence: GGACCGTCGATCTTC, the sequence that describes an occurrence of inversion mutation is: GGACCGTCGATCCTT because the segment TTC in the original sequence has been rearranged as CTT in the mutated sequence.
Turn the revolving turret (2) so that the lowest power objective lens (eg. 4x) is clicked into position.
Place the microscope slide on the stage (6) and fasten it with the stage clips.
Look at the objective lens (3) and the stage from the side and turn the focus knob (4) so the stage moves upward. Move it up as far as it will go without letting the objective touch the coverslip.
Look through the eyepiece (1) and move the focus knob until the image comes into focus.
Adjust the condenser (7) and light intensity for the greatest amount of light.
Move the microscope slide around until the sample is in the centre of the field of view (what you see).
Use the focus knob (4) to place the sample into focus and readjust the condenser (7) and light intensity for the clearest image (with low power objectives you might need to reduce the light intensity or shut the condenser).
When you have a clear image of your sample with the lowest power objective, you can change to the next objective lenses. You might need to readjust the sample into focus and/or readjust the condenser and light intensity. If you cannot focus on your specimen, repeat steps 3 through 5 with the higher power objective lens in place. Do not let the objective lens touch the slide!
When finished, lower the stage, click the low power lens into position and remove the slide.
Your microscope slide should be prepared with a coverslip over the sample to protect the objective lenses if they touch the slide.
Do not touch the glass part of the lenses with your fingers. Use only special lens paper to clean the lenses.
Always keep your microscope covered when not in use.
Always carry a microscope with both hands. Grasp the arm with one hand and place the other hand under the base for support.
Answer:
The proximal convoluted tubule, arising from the Bowmans capsule, traverses within the cortex. ... On the other hand, the distal convoluted tubule has a straight part continuous with the ascending limb of the loop of Henle and a convoluted part lying in the cortex .
Explanation:
hope it helps !
brainliest please :))