1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
2 years ago
5

Write y=3/5x+7 in standard form

Mathematics
2 answers:
andriy [413]2 years ago
6 0

Answer:

3x-5y=-35

Step-by-step explanation:

I have no clue what the step by step explanation i looked it up

larisa [96]2 years ago
5 0
I think the answer is 3x−5y=−35
You might be interested in
Plz solve this problem of trigonometry<br>i am an aakashian​
makkiz [27]

Step-by-step explanation:

\bf L.H.S = \tt \dfrac{sec\: \theta + tan \:  \theta - 1}{tan \:  \theta - sec \:  \theta + 1}  \\  \\

:  \implies \tt \dfrac{\frac{1}{cos  \: \theta}  +  \frac{sin \:  \theta}{cos \: \theta}  - 1}{  \frac{sin \:  \theta}{cos \:  \theta} -  \frac{1}{cos \:  \theta} + 1   } \:  =   \dfrac{1 + sin \:  \theta - cos \:  \theta}{sin \: \theta + cos \:  \theta} \\  \\

: \implies \tt\dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta + (cos \:  \theta - 1)} \:  \times  \: \dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta  -  (cos \:  \theta - 1)} \\  \\

: \implies \tt\dfrac{ sin^{2}  \:  \theta  + cos^{2}  \:  \theta  + 1 - 2  \: cos \:  \theta  - 2  \: sin \:  \theta \: (cos \:  \theta - 1)}{sin^{2}  \: \theta  -  (cos \:  \theta - 1)^{2} } \\  \\

: \implies \tt\dfrac{1 + 1 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta - 1 + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta  - sin^{2} \:  \theta - cos^{2}   \:  \theta  + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 (1 - \:  cos \:  \theta )- 2 \: sin \:  \theta  (1 - \: cos \:  \theta)}{ 2 \: cos \: \theta - 2 \: cos^{2}   \:  \theta} \\  \\

: \implies \tt\dfrac{(2  +  2 \:  sin \:  \theta)  \:  \cancel{(1 -  cos\:  \theta)}}{2 \: cos \:  \theta  \:  \cancel{(1 - cos \:  \theta)}} \:  =  \:  \dfrac{1 + sin \:  \theta}{cos \: \theta}  \\  \\

: \implies\tt\dfrac{1 + sin \:  \theta}{cos \: \theta}  \:  \times  \: \dfrac{1  -  sin \:  \theta}{1 - sin \: \theta} \\  \\

:  \implies\tt\dfrac{1 + sin^{2}  \:  \theta}{cos \: (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos^{2}  \:  \theta}{cos \: \theta (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos \:  \theta}{1 - sin \: \theta}  \:  = \:  \bf{ R.H.S}\\  \\

\huge\bigstar  \:\underline{\red{\sf Hence, Proved}} \:  \bigstar \\

6 0
4 years ago
Rewrite 2/20 : 1/40 as a unit rate
Usimov [2.4K]

Answer:

yes

Step-by-step explanation:

3 0
3 years ago
Help please asap please
olga55 [171]

Answer:

the answer is 64

Step-by-step explanation:

3 0
4 years ago
Simplify or solve for x in (X+9)/2=3
Tems11 [23]

Answer: -3, write the division as a fraction, multiply both sides by 2, move constants to the right, then you're left with x=6-9 which is -3

6 0
4 years ago
Which choice has the same equation in both forms?
Soloha48 [4]

Answer:

8x + 4y = 12 &   y = -2x + 3 are the same equations.

Step-by-step explanation:

To know which choice has the same equation in both forms, we need to transform the standard form into the slope intercept form.

Then, solving for y in the first equation, we get:

8x + 4y = 12\\8x + 4y - 8x = 12 -8x\\4y=12-8x\\\frac{4y}{4}=\frac{12-8x}{4} \\y=3 - 2x\\y=-2x+3

It means that 8x + 4y = 12 &   y = -2x + 3 are the same equations.

At the same way, we get that:

  • 6x + 3y = 18 &  y = 2x + 6  are not the same equation:

6x + 3y = 18\\6x + 3y - 6x = 18-6x\\3y=18-6x\\\frac{3y}{3}=\frac{18-6x}{3} \\y=6 - 2x\\y=-2x+6

  • 2x + 4y = 8  &   y = -2x + 2 are not the same equation:

2x + 4y = 8\\2x + 4y -2x= 8-2x\\4y=8-2x\\\frac{4y}{4}=\frac{8-2x}{4}\\  y=2-\frac{1}{2}x

  • 3x + 4y = 12 &  y = ¾x + 3 are not the same equation:

3x + 4y = 12\\3x + 4y -3x= 12-3x\\4y=12-3x\\\frac{4y}{4}=\frac{12-3x}{4}\\  y=3-\frac{3}{4}x

5 0
3 years ago
Other questions:
  • Write the sum of 48+14 as the product of their GCF and another sum
    7·1 answer
  • 3. How many silver cars is the dealer expected to sell, on average, out of five cars? Interpret this expected value in context.
    9·1 answer
  • A pilot took off and brought her airplane to an elevation of 15,000 feet. Over the next 2 hours, the pilot change the elevation
    15·1 answer
  • Al rented a car. It cost $29.99 plus $0.26 per mile. If Al paid $75.49 for the car rental, how many miles did he drive the car?
    9·1 answer
  • 1. At a fundraiser breakfast, the bill for 3 glasses of orange juice and 5 pancake specials is $7.60, whereas the bill for 1 gla
    7·1 answer
  • Ashley brought 7/8 gallon of lemonade to the party. her friends 2/3 drink of it. how many gallons of lemonade did they drink?
    11·1 answer
  • Maria is in the state park riding her bike on the new bike trail. She starts at the beginning of the trail and rides for 4 miles
    12·2 answers
  • Write an equation for the line that passes through points (2, 0) and (4, 3).
    10·1 answer
  • Write each expression as a product of linear factors 1. X^2+1/2x 2. X^2+2x-3 3. (2x-3)^2 4. X^3+2x^2-19x-20
    6·1 answer
  • an old website requires a four character password with one letter than three digits determine the number of passwords available
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!