1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
2 years ago
8

HELP ASAP NOW LOOK AT PICTURE!!! 30 POINTS!!!

Mathematics
1 answer:
Natali5045456 [20]2 years ago
8 0

Answer:

Well

If we choose plan B then it would be better. 15 cents a messages would be 3 messages in total if we choose plan b.

Step-by-step explanation:

You might be interested in
What are the coordinates of the point which would complete the rectangle shown above?
Strike441 [17]

Answer:

(-3,2)

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Choose the multiplication problem that matches this model:
LenKa [72]

Answer:

Drew studied for an hour for 4 days in a row. How many hours did he study? Drew studies for 2.5 hours.

Step-by-step explanation:

The model shows that drew studied 2/8 every day and 2/8 is equal to 1/4 cut all five days that he studied in half and you get 2.5.

7 0
2 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
XY bisects AB a point G. Which of the following is true about G?
tekilochka [14]
I'm thinking C because if it bisects it, it divides it which means it's it midpoint.
5 0
3 years ago
Read 2 more answers
Which expression is equivalent to 7 − 9 ?
Pachacha [2.7K]

Answer:

Try subtracting 9 from 7 to find the value.

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Explain why 1 hundred 4 tens and 14 tens name the same amount
    10·1 answer
  • What is 6/12 + 3/12 + 4/12+1 8/12+2 9/12?Please turn into mixed number
    12·2 answers
  • What is the movement of particles in solid matter
    12·1 answer
  • Write the sentence as an algebraic equation. The sum of 5 and a number equals 14.
    13·1 answer
  • 49.95 CD player 5% discount
    13·1 answer
  • if it takes a half of a cup of oil to make 20 cookies how much oil is needed to make 5 cookies?? please help.​
    14·2 answers
  • you can buy 2 dvds for the same price you would pay for 3 cds selling for 13.20 apiece. explain how you could find the price for
    9·2 answers
  • Denzel wants to work out the density of a block of wood the block of wood is in the shape of the cuboid
    11·1 answer
  • 15cm 12cm 15cm 12cm 7cm
    5·1 answer
  • Find the angle represented by x. (rounded to the nearest tenth of a degree)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!