Cot^2x - cot^2x cos^2x
= cot^2x - {(cot^2x)(cos^2x)}
= cot^2x { 1 - cos^2x }
= cot^2x { sin^2x }
= (cos^2x/sin^2x) { sin^2x }
= cos^2x
When x=-4:
2(-4)+3y=4
3y=4+8
3y=12
y=4
So the ordered pair is (-4,4), I think
Answer:
1/12
Step-by-step explanation:
Total sub consumed = ¼ + ⅔
= [3(1) + 4(2)]/12 (LCM is 12)
= 11/12
Left = 1 - 11/12 = 1/12
Answer:
See proof below
Step-by-step explanation:
In trigonometry identity
tan^2 theta = sin^2 theta /cos^2 theta
cot^2 theta = cos^2 theta/sin^2 theta
csc^2 theta = 1/sin^2 theta
Substitute into the expression
(sin^2 theta /cos^2 theta )+ (cos^2 theta/sin^2 theta)/1/sin^2 theta
= [sin^4theta + cos^4theta/cos^2 theta sin^2 theta]÷(1/sin^2 theta)
= 1/cos^2 theta sin^2 theta÷(1/sin^2 theta)
= 1/cos^2 theta sin^2 theta * sin^2 theta/1
= 1/cos^2theta
= sec^2theta (Proved!)