I wouldn't use the phrase "extends from." If the leading coeff. is neg, then the graph opens downward. Without more info we do not know the max of this fn. If we did know it, we could state that the graph max is (value) and that the graph "extends downward from this value."
Answer:
CODE: 1977.98
Step-by-step explanation:
A.
(To get the closest answer, round the circumference to the nearest ten thousandth.)
C = 2(3.14)r Circumference formula: C = 2πr
C = 2(3.14)(3)
C = 18.84
B.
A = (3.14)r²
A = (3.14)(3)²
A = (3.14)(9)
A ≈ 28.26
C. (It's asking for the circumference.)
C = 2(3.14)r
C = 2(3.14)(58)
C ≈ 364.24
D. (It's a linear pair, which is 180 degrees.)
4x + 2x = 180
6x = 180
x = 30
m∠ABD = 4x
m∠ABD = 4(30)
m∠ABD = 120°
E. (∠GHI & ∠JHK are vertical angles, so they are congruent.)
x + 7 = 3x - 21
28 = 2x
14 = x
F. (x = 14)
m∠JHK = 3x - 21
m∠JHK = 3(14) - 21
m∠JHK = 42 - 21
m∠JHK = 21°
G. (Supplementary - two angles that add up to 180 degrees.)
180 - 84
= 96°
CODE: E(C - D) - F(G - B) - A
CODE: 14(364.24 - 120) - 21(96 - 28.26) - 18.84
CODE: 14(244.24) - 21(67.74) - 18.84
CODE: 3419.36 - 1422.54 - 18.84
CODE: 1977.98
Dang elementary school homework is hard