Complete question :
The birthweight of newborn babies is Normally distributed with a mean of 3.96 kg and a standard deviation of 0.53 kg. Find the probability that an SRS of 36 babies will have an average birthweight of over 3.9 kg. Write your answer as a decimal. Round your answer to two places after the decimal
Answer:
0.75151
Step-by-step explanation:
Given that :
Mean weight (m) = 3.96kg
Standard deviation (σ) = 0.53kg
Sample size (n) = 36
Probability of average weight over 3.9
P(x > 3.9)
Using the z relation :
Zscore = (x - m) / (σ / √n)
Zscore = (3.9 - 3.96) / (0.53 / √36)
Zscore = - 0.06 / 0.0883333
Zscore = −0.679245
Using the Z probability calculator :
P(Z > - 0.679245) = 0.75151
= 0.75151
Answer:
a. mean = 1000
standard deviation = 4358.9
b. expected value of average damage bar Y = 1000
probability bar y exceeds 2000 = 0.011
Step-by-step explanation:
we have p1 = 95%, y1 = 0, p2 = 5%, y2 = 20000
Mean = (0.95 * 0) + (0.05 * 20000)
= 1000
var(y) = E(y²) - E(Y)²
= we solve for E(y)²
= 0²*0.95 + 20000²*0.05
= 0 + 20000000
then the variance of y = 20000000 - 1000²
=20000000-1000000
= $19000000
standard deviation is the square root of variance
= √19000000
= 4358.9
2.
a. Expected value of average is also the mean = 1000
b. we are to find probability that barY exceeds 2000

= 1000/435.889
= 2.29
1-p(z≤2.29)
= 1 - 0.989
= 0.011
so the probability that barY exceeds 2000 is 0.011
Answer:
1. D
2. AE (with a line above the 2 letters)
3. AC (with an arrowpointing to the right above the 2 letters)
4. B, A, and C
Answer:
sum
Step-by-step explanation:
Answer:
The answer would be 49 I think hehe
Step-by-step explanation: