No. 'Thrust' is what most people in aviation call the force
that pushes the aircraft forward.
The same people generally call the upward force on the wing "lift".
The distance at which the man slips is 0.3 m
Newton's Second Law, F = ma, is used to calculate the braking distance. By dividing the mass of the car by the gravitational acceleration, one may determine its weight. The weight of the car multiplied by the coefficient of friction equals the brake force.
Given-
mass of man= 70 kg
frictional coefficient μ=0.02
mass of body thrown= m2 = 3kg
let s be the stopping distance
we know that frictional force = F= μN
=μMg= 0.02 x 70 x 10
=14 N
∴acceleration, a= 14/70 = 0.2 m/s²
now on applying conservation of linear momentum
pi=pf pi=0 (initially at rest)
0=m1v1-m2v2 (v1= velocity of man) (v2=velocity of body= 8m/s
v1= m2v2 /m1= 0.3 m/s
we know,
v²- u² = -2as
0- (0.3) ²= -2 x 0.2 x 5
s= 0.09/0.4 ≈ 0.3 m
Learn more about distance here-
brainly.com/question/15172156
#SPJ4
Answer:
I would say all of the above.
Explanation:
Look below for more examples
Answer:
μ = 0.375
Explanation:
F = Applied force on the trash can = 75 N
W = weight of the trash can = 200 N
f = frictional force acting on trash can
Since the trash can moves at constant speed, force equation for the motion of can is given as
F - f = 0
75 - f = 0
f = 75 N
μ = Coefficient of friction
frictional force is given as
f = μ W
75 = μ (200)
μ = 0.375