Answer:
(a) The horizontal ground reaction force 
(b) The vertical ground reaction force 
(c) The resultant ground reaction force 
Explanation:
Given
John mass , m = 65 kg
Horizontal acceleration , 
Vertical acceleration , 
(a) Using Newton's 2nd law in horizontal direction

=>
Thus the horizontal ground reaction force 
(b) Using Newton's 2nd law in vertical direction

=>
=>
Thus the vertical ground reaction force 
(c) Resultant ground reaction force is

=>
=>
Thus the resultant ground reaction force 
Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.
Urban sprawl occurs when housing is filled in one location and car dependent communities are forced to moved away from the central urban areas where the population is too vast, even though this impacts the environment by increasing pollution and causing environmental degradation.
Answer:
The average speed of the earth in its orbit is 
Explanation:
The average distance between the Earth and the Sun is
.
The average speed of the earth in its orbit can be found by the next equation :
(1)
Where r is the radius and T is the period.
In this case, the orbit of the Earth can be considered as a circle
(
) instead of an ellipse.
It takes 1 year to the Earth to make one revolution around the Sun. Therefore, its period will be 365.25 days.
Notice that to express the period in terms of seconds, the following is needed:
⇒ 
Then, equation 1 can be used:

