Answer:
If k = −1 then the system has no solutions.
If k = 2 then the system has infinitely many solutions.
The system cannot have unique solution.
Step-by-step explanation:
We have the following system of equations

The augmented matrix is
![\left[\begin{array}{cccc}1&-2&3&2\\1&1&1&k\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C1%261%261%26k%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
The reduction of this matrix to row-echelon form is outlined below.

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&3&-2&k^2-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%263%26-2%26k%5E2-4%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&0&0&k^2-k-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%260%260%26k%5E2-k-2%5Cend%7Barray%7D%5Cright%5D)
The last row determines, if there are solutions or not. To be consistent, we must have k such that


Case k = −1:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-1-2\\0&0&0&(-1)^2-(-1)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-3\\0&0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-1-2%5C%5C0%260%260%26%28-1%29%5E2-%28-1%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-3%5C%5C0%260%260%26-2%5Cend%7Barray%7D%5Cright%5D)
If k = −1 then the last equation becomes 0 = −2 which is impossible.Therefore, the system has no solutions.
Case k = 2:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&2-2\\0&0&0&(2)^2-(2)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&0\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%262-2%5C%5C0%260%260%26%282%29%5E2-%282%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%260%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
This gives the infinite many solution.
To find the slope and y intercept, use the y=mx+b formula where m is the slope and b is the y intercept<span>.
</span><span>y=mx+b
</span>Pull the values of m and b using the y=mx+b formula<span>.
</span><span>m=7/2,</span>b=−2 where m is the slope and b is the <span>y-intercept</span>
Answer:
Θ = 46°
Step-by-step explanation:
the angle between a tangent and a radius at the point of contact is 90° , so
∠ ABO = 90°
since OB = OD ( radii of circle ) then Δ BOD is isosceles and
∠ OBD = ∠ ODB = 22°
the exterior angle of a triangle is equal to the sum of the 2 opposite interior angles.
∠ AOB is an exterior angle of the triangle , then
∠ AOB = 22° + 22° = 44°
the sum of the 3 angles in Δ AOB = 180° , then
Θ + 44° + 90° = 180°
Θ + 134° = 180° ( subtract 134° from both sides )
Θ = 46°
Answer:
This can not be properly answered, because we do not have the length of each trail.
The first step here will be find the length, in miles, for each of the four trails.
As students choose all four trails, the number of miles that each student will bike is equal to the addition of the lenght of the four trails.
Suppose this number is N.
So each student bike N miles, and the company donates $1.75 per mile. Then the amount of money that a single student is N times $1.75, or N*$1.75