SA=201.7cm^2
I used the equation
SA=pi^1/3(6*V)^2/3 in case you have any more questions like this
Answer:
b
Step-by-step explanation:
Answer:
Go to the search bar and type up photos. Press on the photo/screenshot you want and it should give you a button you can use to crop.
Step-by-step explanation:
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
The cost function is
c = 0.000015x² - 0.03x + 35
where x = number of tires.
To find the value of x that minimizes cost, the derivative of c with respect to x should be zero. Therefore
0.000015*2x - 0.03 = 0
0.00003x = 0.03
x = 1000
Note:
The second derivative of c with respect to x is positive (= 0.00003), so the value for x will yield the minimum value.
The minimum cost is
Cmin = 0.000015*1000² - 0.03*1000 + 35
= 20
Answer:
Number of tires = 1000
Minimum cost = 20