Basically, you have two circles. You are asked to take circle 1 and "move it" so that it is on top of circle 2. This process of moving is called a translation and can be thought of as sliding. You do this by ensuring that the two have the same center. So, starting at (-4,5) how do you have to move to end up at (2,1)?
To do this we need to move right 6 as the x-coordinate goes from -4 to 2. We also need to move down 4 as the y-coordinate goes from 5 to 1. So we add 6 to the x-coordinate and subtract 4 from the y-coordinate. The transformation rule is (x+6, y-4).
Once you do this the circles have the same center. Next you wish to dilate circle 1 so it ends up being the same size at circle 2. That means you stretch it out in such a way that it keeps its shape. Circle 1 has a radius of 2 centimeters and circle 2 has a radius of 6 centimeters. That is 3x bigger. So we dilate by a factor of 3.
Translations and dilations (along with reflections and rotations) belong to a group known as transformations.
Volume of the box= <span>56 cubic inches
let x is the length, then
width =</span><span>2 inches shorter than its length = x - 2
</span>height = <span>3 inches taller than its length = x+3
Volume = length x width x height
56 = x x (x-2) x (x+3)
56 = (x</span>² -2x)(x+3)
56 = x³ +3x² -2x² - 6x
56 = x³ + x² -6x
x³+x²-6x-56 = 0
using the rational root theorem and factoring the polynomial;
(x-4)(x² +5x +14) = 0
from here;
x-4 = 0
x = 4
So, length = 4 inches
width = x - 2 = 4 -2 = 2 inches
length = x + 3 = 4 + 3 = 7 inches
volume = l x w x h = 4 x 2 x 7 = 56
Answer:
-3
Step-by-step explanation: