Answer:
hi
Step-by-step explanation:
One form of the equation of a parabola is
y = ax² + bx + c
The curve passes through (0,-6), (-1,-12) and (3,0). Therefore
c = - 6 (1)
a - b + c = -12 (2)
9a + 3b + c = 0 (3)
Substitute (1) into (2) and into (3).
a - b -6 = -12
a - b = -6 (4)
9a + 3b - 6 = 0
9a + 3b = 6 (5)
Substitute a = b - 6 from (4) into (5).
9(b - 6) + 3b = 6
12b - 54 = 6
12b = 60
b = 5
a = b - 6 = -1
The equation is
y = -x² + 5x - 6
Let us use completing the square to write the equation in standard form for a parabola.
y = -[x² - 5x] - 6
= -[ (x - 2.5)² - 2.5²] - 6
= -(x - 2.5)² + 6.25 - 6
y = -(x - 2.5)² + 0.25
This is the standdard form of the equation for the parabola.
The vertex us at (2.5, 0.25).
The axis of symmetry is x = 2.5
Because the leading coefficient is -1 (negative), the curve opens downward.
The graph is shown below.
Answer: y = -(x - 2.5)² + 0.25
3 letters to US = 3*0.94 = 2.82
2 local letters = 2*0.44 = 0.88
checking: 2.82+0.88 = 3.70
to get rid out of 0.04 cents you have to multiply it by 5. so total number of letters would be 5.
Let us say that x is the real height of the original hut,
therefore we can establish the equation:
5 : x = 1.5 : 8
5 / x = 1.5 / 8
Solving for x:
x = 5 * 8 / 1.5
x = 40 / 1.5
<span>x = 26.67 ft</span>
Plug x = 0 into the function
f(x) = x^3 + 2x - 1
f(0) = 0^3 + 2(0) - 1
f(0) = -1
Note how the result is negative. The actual number itself doesn't matter. All we care about is the sign of the result.
Repeat for x = 1
f(x) = x^3 + 2x - 1
f(1) = 1^3 + 2(1) - 1
f(1) = 2
This result is positive.
---------------------------
We found that f(0) = -1 and f(1) = 2. The first output -1 is negative while the second output 2 is positive. Going from negative to positive means that, at some point, we will hit y = 0. We might have multiple instances of this happening, or just one. We don't know for sure. The only thing we do know is that there is at least one root in this interval.
To actually find this root, you'll need to use a graphing calculator because the root is some complicated decimal value. Using a graphing calculator, you should find the root to be approximately 0.4533976515