Answer:
The gradient of the straight line that passes through (2, 6) and (6, 12) is
.
Step-by-step explanation:
Mathematically speaking, lines are represented by following first-order polynomials of the form:
(1)
Where:
- Independent variable.
- Dependent variable.
- Slope.
- Intercept.
The gradient of the function is represented by the first derivative of the function:

Then, we conclude that the gradient of the staight line is the slope. According to Euclidean Geometry, a line can be form after knowing the locations of two distinct points on plane. By definition of secant line, we calculate the slope:
(2)
Where:
,
- Coordinates of point A.
,
- Coordinates of point B.
If we know that
and
, then the gradient of the straight line is:



The gradient of the straight line that passes through (2, 6) and (6, 12) is
.
Answer:
no it is not rational
Step-by-step explanation:
it just isnt hope this helps
Answer:

Step-by-step explanation:
Given: In a parallelogram ABCD, diagonals intersect at O and ar(ABCD) is
.
We need to find the area of triangle AOB.
We know that each diagonal divide the parallelogram in two equal parts and diagonals bisect each other.
It means both diagonals divide the parallelogram in 4 equal parts.



Hence, the values of ar(AOB) is
.
Answer:
Im not entirely sure this is right but
0 = tan^-1(20 ÷ 25)
0 ≈ 38.65°
hope i helped lol
Answer:
Binomial with a degree of 3
Step-by-step explanation:
-8m^3 + 11m....notice that it has 2 terms....(-8m^3) and (11m). Having 2 terms makes it a binomial...if it would have had 3 terms, it would have been a trinomial. If it has only one variable, the degree is the highest exponent...so this has a degree of 3 since ^3 is the highest exponent.
so the answer is : binomial with a degree of 3