Answer:
Explanation:
1)<u> Principal quantum number, n = 2</u>
- n is the principal quantum number and indicates the main energy level.
<u>2) Second quantum number, ℓ</u>
- The second quantum number, ℓ, is named, Azimuthal quantum number.
The possible values of ℓ are from 0 to n - 1.
Hence, since n = 2, there are two possible values for ℓ: 0, and 1.
This gives you two shapes for the orbitals: 0 corresponds to "s" orbitals, and 1 corresponds to "p" orbitals.
<u>3) Third quantum number, mℓ</u>
- The third quantum number, mℓ, is named magnetic quantum number.
The possible values for mℓ are from - ℓ to + ℓ.
Hence, the poosible values for mℓ when n = 2 are:
- for ℓ = 1, mℓ = -1, 0, or +1.
<u>4) Fourth quantum number, ms.</u>
- This is the spin number and it can be either +1/2 or -1/2.
Therfore the full set of possible states (different quantum number for a given atom) for n = 2 is:
- (2, 0, 0 +1/2)
- (2, 0, 0, -1/2)
- (2, 1, - 1, + 1/2)
- (2, 1, -1, -1/2)
- (2, 1, 0, +1/2)
- (2, 1, 0, -1/2)
- (2, 1, 1, +1/2)
- (2, 1, 1, -1/2)
That is a total of <u>8 different possible states</u>, which is the answer for the question.
Answer:
<em>Answer: C</em>
Step-by-step explanation:
<u>The Cosine Function</u>
The graph of a cosine function is a sinusoid that starts at its maximum value of 1 at x=0 and takes x=2π radians to complete a full cycle. The function of the parent cosine function is:

Both the amplitude A and the angular frequency w of a cosine can be modeled by the function

The graph of the cosine function shown in the figure has an amplitude of A=3 and it completes a full cycle at x=π/2, thus:

Thus:

Therefore, the equation of the sinusoid is:

Answer: C