The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
<h3>How to derive the equation of the parabola from the locations of the vertex and focus</h3>
Herein we have the case of a parabola whose axis of symmetry is parallel to the x-axis. The <em>standard</em> form of the equation of this parabola is shown below:
(x - h) = [1 / (4 · p)] · (y - k)² (1)
Where:
- (h, k) - Coordinates of the vertex.
- p - Distance from the vertex to the focus.
The distance from the vertex to the focus is 1 / 8. If we know that the location of the vertex is (0, 0), then the <em>standard</em> form of the equation of the parabola is:
x = 2 · y² (1)
The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
To learn more on parabolae: brainly.com/question/4074088
#SPJ1
Answer:
9 + 10 = 21
Step-by-step explanation:
9 + 10 = 21
Factor out 9 and 10
9 = 3 · 3 10 = 2 · 5
Next multiply 3 by 2
3 × 2 = 6
Then multiply 3 by 5
3 · 5 = 15
Finally add the products
15 + 6 = 21
The permiter is oppsite making it level
This is the area of a triangle and a square
Area of a triangle is 1/2BH
here total height is 16 in triangle h is 16-10=6
base is 10
A=1/2*10*6
A=30 inch^2
Area of square=a^2
A2=10^2=100inches^2
A1+A2=100+30
130inches^2
6.7 is closer to 7 so you would round it to 7