1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
2 years ago
15

1:the area of a rectangular floor is 32m².if it's breadth is half of its length find its perimeter

Mathematics
2 answers:
forsale [732]2 years ago
7 0

\bold{\huge{\pink{\underline{ Solutions }}}}

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

  • <u>The </u><u>area </u><u>of </u><u>rectangular </u><u>floor </u><u>is </u><u>3</u><u>2</u><u> </u><u>m²</u>
  • <u>Breath </u><u>is </u><u>half </u><u>of </u><u>its </u><u>length </u>

<h3><u>Therefore</u><u>, </u></h3>

Let the length of the rectangular field be x

<u>So, </u>

Breath of the rectangular field will be x/2

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: rectangle = length}}{\bold{\red{\times{ Breath}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{32  = x }{\sf{\times{\dfrac{x}{2}}}}

\sf{32  =  }{\sf{\dfrac{x^{2}}{2}}}

\sf{ 32}\sf{\times{ 2 = x^{2}}}

\sf{ 64 = x^{2}}

\bold{ x = 8 m}

Thus, The length of rectanglular field is 8m

<u>Therefore</u><u>, </u>

Breath of the rectangular field will be

\sf{=}{\sf{\dfrac{8}{2}}}

\bold{ = 4 m }

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>perimeter </u><u>of </u><u>the </u><u>given </u><u>rectangular </u><u>field </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

Perimeter of the reactangle

\bold{\blue{ = 2( L + W) }}

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>

Perimeter of the rectangular field

\sf{ = 2( 8 + 4) }

\sf{ = 2}{\sf{\times{12}}}

\bold{ = 24 m}

Hence, The perimeter of the rectangular field is 24 m

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have </u>

  • <u>The </u><u>perimeter </u><u>of </u><u>square </u><u>is </u><u>1</u><u>2</u><u> </u><u>cm</u>

Let the side of the square be x

<u>We</u><u> </u><u>know </u><u>that</u><u>, </u>

\bold{\pink{ Perimeter\: of\: square = 4 }}{\bold{\pink{\times{ side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>

\sf{12  = 4 }{\sf{\times{ x }}}

\sf{\dfrac{ 12}{4}}{\sf{ = x }}

\bold{ x = 3 cm}

Thus, The length of the square is 3 cm

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: square = Side }}{\bold{\red{\times{ Side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of square

\sf{ = 3 }{\sf{\times{ 3 }}}

\sf{ = 9 cm^{2}}

Hence , The length and area of square is 3cm and 9 cm²

<h3><u>Answer </u><u>3</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have </u>

  • <u>The </u><u>perimeter</u><u> </u><u>of </u><u>square </u><u>feild </u><u>is </u><u>6</u><u>0</u><u> </u><u>m</u>

Let the side of the square feild be x

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\pink{ Perimeter\: of\: square = 4 }}{\bold{\pink{\times{ side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{60  = 4 }{\sf{\times{ x }}}

\sf{\dfrac{ 60}{4}}{\sf{ = x }}

\bold{ x = 15 m }

Thus, The side of the square feild is 15m

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: square = Side }}{\bold{\red{\times{ Side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of square

\sf{ = 15  }{\sf{\times{ 15 }}}

\sf{ = 225 cm^{2}}

Hence, The area of square feild is 225 cm²

<h3><u>Answer </u><u>4</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

  • <u>The </u><u>perimeter </u><u>of </u><u>rectangle </u><u>is </u><u>2</u><u>8</u><u> </u><u>cm</u>
  • <u>The </u><u>length </u><u>of </u><u>rectangle </u><u>is </u><u>8</u><u> </u><u>cm</u>

Let the breath of the rectangle be x

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\blue{Perimeter\:of\: rectangle= 2( L + W) }}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 28 = 2( 8 + x) }

\sf{ 28 = 16 + 2x }

\sf{ 28 - 16 = 2x }

\sf{ 12 = 2x }

\sf{\dfrac{ 12}{2}}{\sf{ = x }}

\bold{ x = 6 cm}

Thus, The breath of the rectangle is 6 cm

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>rectangle </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: rectangle = length}}{\bold{\red{\times{ Breath}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of rectangle

\sf{= 8 }{\sf{\times{6}}}

\sf{ = 48 cm^{2}}

Hence, The breath and area of rectangle is 6cm and 48 cm² .

[ Note :- Kindly refer app for better understanding ]

Bingel [31]2 years ago
3 0

Answer:

Step-by-step explanation:

1)  length = x m

breadth = x/2 m

Area of rectangular floor = 32 square m

length * breadth = 32\\\\x*\dfrac{1}{2}x = 32\\\\\\x^{2}=32*2\\\\\\x^{2} = 64\\\\x=\sqrt{64}=\sqrt{8*8}\\\\x = 8 \ m

Length = 8 m

Breadth =8/2 = 4 m

Perimeter = 2*(length + breadth) = 2*(8 + 4)

                = 2*12

                = 24 m

2) Perimeter of square = 12 cm

Side of a square = perimeter ÷ 4 = 12 ÷ 4 = 3 cm

Area =side *side = 3*3 = 9 cm²

3) Perimeter of square field = 60 m

Side = Perimeter ÷ 4 = 60 ÷4 = 15 m

Area of square = 15 * 15 = 225 m²

4) Perimeter of rectangle = 28 cm

breadth = (Perimeter ÷ 2) - length

             = (28 ÷2) - 8

             = 14 - 8

Breadth = 6 cm

Area of rectangle = 8 * 6 = 48 cm

You might be interested in
Jorge deposited $5,000 into an account
Brums [2.3K]

Answer:

<em>$600.00</em>

Step-by-step explanation:

To find the answer we must first <em>divide 3 by 100 to find its actual worth</em>,        <em>3 ÷ 100 = 0.03</em>.  Take <em>0.03 and multiply it by 5,000</em>, and you get<em> 150</em>.  Now we have the <em>annual interest in a year</em>, so lets <em>multiply it by 4 years</em>, and we get <u><em>$600. </em></u>

4 0
3 years ago
How many length 6 passwords with 1 number 1 upper and 1 lower?
Mars2501 [29]
What Do you mean 6 passwords?
6 0
3 years ago
Read 2 more answers
What value of x makes the equation true? 4x - 3= -9 + 7x
uysha [10]

Answer:

x = 2

Step-by-step explanation:

To find the x-value that makes the equation true, we would have to solve for x in the equation. To do that, we would have to get the equation in the form x = _. That would be our answer.

4x - 3 = -9 + 7x

Add 9 to both sides to get rid of the -9 on the right side.

4x - 3 + 9 = 7x

Simplify.

4x + 6 = 7x

Subtract 4x from both sides to get rid of the 4x on the left side.

6 = 7x - 4x

Simplify.

6 = 3x

3x = 6

Divide both sides by 3 to get rid of the coefficient of 3 on the left side.

x = 6/3

Simplify.

x = 2

So, the x-value that makes the equation true would be 2.

I hope this helps. :)

4 0
4 years ago
Read 2 more answers
Find value of P and Q
ch4aika [34]

Answer:

P= 6 \frac{1}{7}\\\\Q = 4 \frac{2}{7}

Step-by-step Explanation

\frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  = P+Q\sqrt 2 \\  \\  \frac{(5 + 3 \sqrt{2}) }{(5 - 3 \sqrt{2}) }  \times  \frac{(5 + 3 \sqrt{2}) }{(5   +  3 \sqrt{2} )} = P+Q\sqrt 2 \\  \\  \frac{ {(5 + 3 \sqrt{2} )}^{2} }{ {(5)}^{2}  - (3 \sqrt{2})^{2}  }  = P+Q\sqrt 2 \\  \\ \frac{ {5}^{2} +  {(3 \sqrt{2} )^{2}  + 2.5.3 \sqrt{2} } }{25 - 9 \times 2} = P+Q\sqrt 2 \\  \\\frac{ 25 + 18  + 30 \sqrt{2}  }{25 - 18} = P+Q\sqrt 2 \\  \\\frac{ 43  + 30 \sqrt{2}  }{7} = P+Q\sqrt 2 \\  \\ \frac{43}{7}  +  \frac{30 }{7} \sqrt{2}  = P+Q\sqrt 2 \\  \\ equating \: like \: terms \: on \: both \: sides \\  \\ P =  \frac{43}{7}   \\  \\ \huge \red { \boxed{ P= 6 \frac{1}{7}}}  \\  \\ Q =  \frac{30}{7}  \\  \\ \huge  \orange { \boxed{ Q = 4 \frac{2}{7} }}

4 0
3 years ago
3x=3 need helppppppppppp
vazorg [7]

Answer:

x=1

Step-by-step explanation:

Divide both sides by 3 to neutralize the x being multiplied by 3

8 0
3 years ago
Read 2 more answers
Other questions:
  • I need to know the answer to those two equations
    10·1 answer
  • Helpplsssssssssspllssls.sllslslsls
    8·2 answers
  • I need help ASAP due in 3mins
    9·1 answer
  • Which ordered pair represents a reflection of the point (-3,5) across the y-axis?
    15·1 answer
  • Worth 10 points <br><br> Thank you to whoever does it’s a picture btw
    15·1 answer
  • I don’t understand this
    10·2 answers
  • Write an equation of the line passing through point P(-8, 0) that is perpendicular to the line
    8·1 answer
  • Please help!<br><br> For what value of x must ABCD be a​ parallelogram?<br><br> x=?
    9·1 answer
  • Help please, it would mean a ton​
    14·1 answer
  • !!!PLEASE HELP!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!