1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
2 years ago
15

1:the area of a rectangular floor is 32m².if it's breadth is half of its length find its perimeter

Mathematics
2 answers:
forsale [732]2 years ago
7 0

\bold{\huge{\pink{\underline{ Solutions }}}}

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

  • <u>The </u><u>area </u><u>of </u><u>rectangular </u><u>floor </u><u>is </u><u>3</u><u>2</u><u> </u><u>m²</u>
  • <u>Breath </u><u>is </u><u>half </u><u>of </u><u>its </u><u>length </u>

<h3><u>Therefore</u><u>, </u></h3>

Let the length of the rectangular field be x

<u>So, </u>

Breath of the rectangular field will be x/2

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: rectangle = length}}{\bold{\red{\times{ Breath}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{32  = x }{\sf{\times{\dfrac{x}{2}}}}

\sf{32  =  }{\sf{\dfrac{x^{2}}{2}}}

\sf{ 32}\sf{\times{ 2 = x^{2}}}

\sf{ 64 = x^{2}}

\bold{ x = 8 m}

Thus, The length of rectanglular field is 8m

<u>Therefore</u><u>, </u>

Breath of the rectangular field will be

\sf{=}{\sf{\dfrac{8}{2}}}

\bold{ = 4 m }

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>perimeter </u><u>of </u><u>the </u><u>given </u><u>rectangular </u><u>field </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

Perimeter of the reactangle

\bold{\blue{ = 2( L + W) }}

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>

Perimeter of the rectangular field

\sf{ = 2( 8 + 4) }

\sf{ = 2}{\sf{\times{12}}}

\bold{ = 24 m}

Hence, The perimeter of the rectangular field is 24 m

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have </u>

  • <u>The </u><u>perimeter </u><u>of </u><u>square </u><u>is </u><u>1</u><u>2</u><u> </u><u>cm</u>

Let the side of the square be x

<u>We</u><u> </u><u>know </u><u>that</u><u>, </u>

\bold{\pink{ Perimeter\: of\: square = 4 }}{\bold{\pink{\times{ side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>

\sf{12  = 4 }{\sf{\times{ x }}}

\sf{\dfrac{ 12}{4}}{\sf{ = x }}

\bold{ x = 3 cm}

Thus, The length of the square is 3 cm

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: square = Side }}{\bold{\red{\times{ Side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of square

\sf{ = 3 }{\sf{\times{ 3 }}}

\sf{ = 9 cm^{2}}

Hence , The length and area of square is 3cm and 9 cm²

<h3><u>Answer </u><u>3</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have </u>

  • <u>The </u><u>perimeter</u><u> </u><u>of </u><u>square </u><u>feild </u><u>is </u><u>6</u><u>0</u><u> </u><u>m</u>

Let the side of the square feild be x

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\pink{ Perimeter\: of\: square = 4 }}{\bold{\pink{\times{ side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{60  = 4 }{\sf{\times{ x }}}

\sf{\dfrac{ 60}{4}}{\sf{ = x }}

\bold{ x = 15 m }

Thus, The side of the square feild is 15m

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: square = Side }}{\bold{\red{\times{ Side}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of square

\sf{ = 15  }{\sf{\times{ 15 }}}

\sf{ = 225 cm^{2}}

Hence, The area of square feild is 225 cm²

<h3><u>Answer </u><u>4</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

  • <u>The </u><u>perimeter </u><u>of </u><u>rectangle </u><u>is </u><u>2</u><u>8</u><u> </u><u>cm</u>
  • <u>The </u><u>length </u><u>of </u><u>rectangle </u><u>is </u><u>8</u><u> </u><u>cm</u>

Let the breath of the rectangle be x

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\blue{Perimeter\:of\: rectangle= 2( L + W) }}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 28 = 2( 8 + x) }

\sf{ 28 = 16 + 2x }

\sf{ 28 - 16 = 2x }

\sf{ 12 = 2x }

\sf{\dfrac{ 12}{2}}{\sf{ = x }}

\bold{ x = 6 cm}

Thus, The breath of the rectangle is 6 cm

<h3><u>Now</u><u>, </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>rectangle </u>

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{\red{Area \: of \: rectangle = length}}{\bold{\red{\times{ Breath}}}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

Area of rectangle

\sf{= 8 }{\sf{\times{6}}}

\sf{ = 48 cm^{2}}

Hence, The breath and area of rectangle is 6cm and 48 cm² .

[ Note :- Kindly refer app for better understanding ]

Bingel [31]2 years ago
3 0

Answer:

Step-by-step explanation:

1)  length = x m

breadth = x/2 m

Area of rectangular floor = 32 square m

length * breadth = 32\\\\x*\dfrac{1}{2}x = 32\\\\\\x^{2}=32*2\\\\\\x^{2} = 64\\\\x=\sqrt{64}=\sqrt{8*8}\\\\x = 8 \ m

Length = 8 m

Breadth =8/2 = 4 m

Perimeter = 2*(length + breadth) = 2*(8 + 4)

                = 2*12

                = 24 m

2) Perimeter of square = 12 cm

Side of a square = perimeter ÷ 4 = 12 ÷ 4 = 3 cm

Area =side *side = 3*3 = 9 cm²

3) Perimeter of square field = 60 m

Side = Perimeter ÷ 4 = 60 ÷4 = 15 m

Area of square = 15 * 15 = 225 m²

4) Perimeter of rectangle = 28 cm

breadth = (Perimeter ÷ 2) - length

             = (28 ÷2) - 8

             = 14 - 8

Breadth = 6 cm

Area of rectangle = 8 * 6 = 48 cm

You might be interested in
PLEASE HELPPO?!!!! Look at the attachment below
agasfer [191]

Answer:

157

Step-by-step explanation:

just trust me bro

7 0
3 years ago
What is the longest line segment that can be drawn in a right rectangular prism that is 14 cm long 11 cm wide and 7 cm tall
weqwewe [10]

Answer:

The longest segment is approximately 19.13cm

Step-by-step explanation:

Given

l = 14cm

w = 11cm

h = 7cm

Required

The length of the longest segment (d)

This is calculated using:

d = \sqrt{l^2 +w^2 + h^2

So, we have:

d = \sqrt{14^2 +11^2 +7^2

Using a calculator, the equation becomes

d = \sqrt{366

Take square roots

d = 19.13cm

4 0
3 years ago
1/3+1/3x+8/3=-1/3(6x+11)
ivann1987 [24]

Answer:

x=-20/7 or -2.857

Step-by-step explanation:

bring like terms together in each side of the = side

then work the out

3 0
3 years ago
Icon" to view the SpeechStream® loolbar article for
RUDIKE [14]

<u>Answer:</u>

\simeq 820 feet

<u>Step-by-step explanation:</u>

He has asked me to move the finish line 0.25 km forward

Now,

we know that

1 km = 0.621371 mile

⇒ 0.25 km = 0.25 \times 0.621371 mile  

                   = 0.25 \times 0.621371 \times 1760 \times 3 feet

(since 1760 yards = 1 mile and 3 feet = 1 yard)

                    = 820.20972 feet

                   \simeq 820 feet . (Answer)

8 0
3 years ago
What is 11/4 as a decimal
ollegr [7]
The answer is 2.75. U have to divide it.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Extra points to the person who answer first
    14·1 answer
  • What is the greatest common factor of 10 and 15? Explain your answer
    9·2 answers
  • PLEASE HELP PRECALC WILL MARK BRAINLIEST
    14·1 answer
  • Plz help me answer this question I’m being timed
    5·2 answers
  • Estimate the weight of the object<br> fish bowl with water n fish in it<br> •8kg<br> •800g<br> •80g
    5·2 answers
  • If the coordinates of A are (1, 1) and the midpoint of AB is
    13·1 answer
  • Tell a story about a time when you were very competitive.
    11·1 answer
  • Please help 15 points
    12·2 answers
  • PLS help asap bt 1230 pt help thank you will brainliest
    9·1 answer
  • A football team charges $30 per ticket and averages 20,000 people per game. Each person spends an average of $8 on concessions.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!