Answer:
The man moves across the ice with a speed of 0.345m/s.
Explanation:
From the conservation of linear momentum, we have that the total linear momentum before the book throw is equal to the total linear momentum just after it. Since the initial velocity of the system is zero (so the initial momentum is zero), we have that:

Where
is the mass of the man,
is the mass of the book, and
and
are their velocities. Plugging in the given values, we can compute the speed of the man (ignoring the negative sign, because we care about the magnitude, not the direction):

In words, the resulting speed of the man is 0.345m/s.
Answer:
Archimedes Principle states that "any body completely or partially submerged in water is acted upon by an upthrust force which is equal to the magnitude of Weight of the body."
Answer:
What is a Free Body Diagram?
The free body diagram helps you understand and solve static and dynamic problem involving forces. It is a diagram including all forces acting on a given object without the other object in the system. You need to first understand all the forces acting on the object and then represent these force by arrows in the direction of the force to be drawn.
Explanation:
Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.
Gravitational force is given by, 
Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.
Gravitational force of the star on planet 1, 
Gravitational force of the star on planet 2, 
Ratio, 

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.