The answer is already in the blank for, its was greater
Answer:
The answers are in the explanation section below
Explanation:
1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.
2) The positive test charge will have the least potential energy when it gets to the negative electrode point.
3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.
4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.
The pattern to be sketched is attached.
It should be noted that the student should use K = 1/2mv² with the initial speed of the block for one trial.
<h3>
Method of using the data collected.</h3>
From the complete information, the student wants to use the data collected and the known quantities from the experiment to determine the initial total mechanical energy of the block-ramp-Earth system for all trials in the experiment.
In this case, it's important to use K = 1/2mv² with the block's initial speed for one trial due to the fact that the initial speed is the same in all the trials.
Learn more about experiments on:
brainly.com/question/17274244
To calculate the force of impact F, first lets calculate the acceleration a of the ball:
a=v/t where v is the velocity of the ball and t is time
a=32/0.8=40 m/s²
To get the force F we need the Newtons second law:
F=m*a where m is the mass of the ball and a is the acceleration.
F=m*a= 0.2*40 = 8 N
So the impact force is F= 8 N.
Answer:
im no proffesional
Explanation:
but i tghink you need a proffessional for this one