<em>Note:</em><em> You missed to add some of the details of the question.
</em>
<em>Hence, I am solving your concept based on an assumed graph which I have attached. It would anyways clear your concept.</em>
<em></em>
Answer:
Please check the explanation.
Step-by-step explanation:
Given the right angled-triangle ABC as shown in the attached diagram
From the triangle:
Ф= ∠C = 30°
AB = 6 units
BC = y
tan Ф = opp ÷ adjacent
The opposite of ∠C = 30° is the length '6'.
The adjacent of ∠C = 30° is the length 'y'.
As Ф= ∠C = 30°
so
tan Ф = opp ÷ adjacent
tan 30 = 5 ÷ y
1 ÷ √3 = 5 ÷ y
y = 8.7 units
Therefore, the length of the unknown side length 'y' is 8.7 units.
Step one:
ALWAYS set equation equal to zero, which in this case has already been done for us.
Step two:
Figure out what formula you need to use in order to solve in this case I'd use the Quadratic formula.
a=1
b=9
c=2
Quadratic formula:

Then you would plug in the information.

The solve for what is underneath the square root ONLY.

Since you cannot solve this any further, your final two answers are...

U should do like this... But sry I don't know third part
-35/4 should be the answer.
Given:
ABC is an isosceles triangle in which AC =BC.
D and E are points on BC and AC such that CE=CD.
To prove:
Triangle ACD and BCE are congruent.
Solution:
In triangle ACD and BCE,
(Given)

(Common angle)
(Given)

In triangles ACD and BCE two corresponding sides and one included angle are congruent. So, the triangles are congruent by SAS congruence postulate.
(SAS congruence postulate)
Hence proved.