I don’t understand your question
For this problem, we use the Beer Lambert's Law. Its usual equation is:
A = ∈LC
where
A is the absorbance
∈ is the molar absorptivity
L is the path length
C is the concentration of the sample solution
As you notice, we only have to find the absorbance. But since we are not given with the molar absorptivity, we will have to use the modified equation that relates % transmittance to absorbance:
A = 2 - log(%T)
A = 2 - log(27.3)
A = 0.5638
Answer:
The reaction in this experiment is termed an iodine clock reaction, because it is the molecular iodine (I2) that undergoes the sudden concentration change. When the iodine concentration increases, it reacts with the starch in the solution to form a complex, turning it a deep blue-black color.
Answer:
- <u><em>Option D. There will be a shift toward the reactants.</em></u>
Explanation:
The reaction is:

The application of LeChatelier's principle leads to consider the <em>heat</em> as a <em>reactant</em> or a product depending on if it is on the left side or the right side.
In this reaction, the <em>heat</em> is on the left side, thus it must be considered a <em>reactant</em>.
Decreasing the temperature is equivalent to remove or consume heat. Thus, the reaction must shif to the left to compensate that reduction of heat. That is the reverse reaction shall be favored.
In conclusion, <em>there will be a shift toward the reactants.</em>