1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
2 years ago
13

Х=m<J= m<M =..............​

Mathematics
1 answer:
Oksi-84 [34.3K]2 years ago
4 0

Answer:

x = 14

Step-by-step explanation:

10x - 33 + 4x + 17 = 180

14x - 16 = 180

14x = 196

x = 14

You might be interested in
ONLY ANSWER IF YOU KNOW THE CORRECT ANSWER!!!
makvit [3.9K]
Boardgame+snacks=total weight
total weight<25

boardgame=4
snacks=weight per each time number=14 times n or 14n

4+14n<25
minus 4 both sides
14n<21
divide both sides by 14
n<1.5
we can't send 0.5 package so we round down
n<1

send less than 1 snack pack
A
3 0
3 years ago
Read 2 more answers
The time a randomly selected individual waits for an elevator in an office building has a uniform distribution with a mean of 0.
Amiraneli [1.4K]

Answer:

The mean of the sampling distribution of means for SRS of size 50 is \mu = 0.5 and the standard deviation is s = 0.0409

By the Central Limit Theorem, since we have of sample of 50, which is larger than 30, it does not matter that the underlying population distribution is not normal.

0% probability a sample of 50 people will wait longer than 45 seconds for an elevator.

Step-by-step explanation:

To solve this problem, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean \mu and standard deviation \sigma, a large sample size, of at least 30, can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}

In this problem, we have that:

\mu = 0.5, \sigma = 0.289

What are the mean and standard deviation of the sampling distribution of means for SRS of size 50?

By the Central Limit Theorem

\mu = 0.5, s = \frac{0.289}{\sqrt{50}} = 0.0409

The mean of the sampling distribution of means for SRS of size 50 is \mu = 0.5 and the standard deviation is s = 0.0409

Does it matter that the underlying population distribution is not normal?

By the Central Limit Theorem, since we have of sample of 50, which is larger than 30, it does not matter that the underlying population distribution is not normal.

What is the probability a sample of 50 people will wait longer than 45 seconds for an elevator?

We have to use 45 seconds as minutes, since the mean and the standard deviation are in minutes.

Each minute has 60 seconds.

So 45 seconds is 45/60 = 0.75 min.

This probability is 1 subtracted by the pvalue of Z when X = 0.75. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{0.75 - 0.5}{0.0409}

Z = 6.11

Z = 6.11 has a pvalue of 1

1-1 = 0

0% probability a sample of 50 people will wait longer than 45 seconds for an elevator.

8 0
3 years ago
BRAINLIEST ANSWER
Vilka [71]

Answer:

/25 is the trigonometric

tan=24

4 0
3 years ago
Read 2 more answers
**ANSWER ASAP WILL GIVE BRAINLIEST; QUESTIONS ARE IN PICTURE**
lord [1]

Answer:

below( hope this helps )

Step-by-step explanation:

2. No because we don't know if the triangles are right triangles.

3. unknown since there are no labels to what the triangle points are

6 0
3 years ago
Suppose the test scores for a college entrance exam are normally distributed with a mean of 450 and a s. d. of 100. a. What is t
svet-max [94.6K]

Answer:

a) 68.26% probability that a student scores between 350 and 550

b) A score of 638(or higher).

c) The 60th percentile of test scores is 475.3.

d) The middle 30% of the test scores is between 411.5 and 488.5.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 450, \sigma = 100

a. What is the probability that a student scores between 350 and 550?

This is the pvalue of Z when X = 550 subtracted by the pvalue of Z when X = 350. So

X = 550

Z = \frac{X - \mu}{\sigma}

Z = \frac{550 - 450}{100}

Z = 1

Z = 1 has a pvalue of 0.8413

X = 350

Z = \frac{X - \mu}{\sigma}

Z = \frac{350 - 450}{100}

Z = -1

Z = -1 has a pvalue of 0.1587

0.8413 - 0.1587 = 0.6826

68.26% probability that a student scores between 350 and 550

b. If the upper 3% scholarship, what score must a student receive to get a scholarship?

100 - 3 = 97th percentile, which is X when Z has a pvalue of 0.97. So it is X when Z = 1.88

Z = \frac{X - \mu}{\sigma}

1.88 = \frac{X - 450}{100}

X - 450 = 1.88*100

X = 638

A score of 638(or higher).

c. Find the 60th percentile of the test scores.

X when Z has a pvalue of 0.60. So it is X when Z = 0.253

Z = \frac{X - \mu}{\sigma}

0.253 = \frac{X - 450}{100}

X - 450 = 0.253*100

X = 475.3

The 60th percentile of test scores is 475.3.

d. Find the middle 30% of the test scores.

50 - (30/2) = 35th percentile

50 + (30/2) = 65th percentile.

35th percentile:

X when Z has a pvalue of 0.35. So X when Z = -0.385.

Z = \frac{X - \mu}{\sigma}

-0.385 = \frac{X - 450}{100}

X - 450 = -0.385*100

X = 411.5

65th percentile:

X when Z has a pvalue of 0.35. So X when Z = 0.385.

Z = \frac{X - \mu}{\sigma}

0.385 = \frac{X - 450}{100}

X - 450 = 0.385*100

X = 488.5

The middle 30% of the test scores is between 411.5 and 488.5.

7 0
3 years ago
Other questions:
  • Mr.Lopez drives his car 12,000 miles each year for 5 years. What is the total number of miles Mr.Lopez drives?
    15·2 answers
  • INVESTMENTS Determine the amount of an investment if $1000 is invested at an interest rate of 8% compounded quarterly for 2 year
    7·1 answer
  • With her motorboat at full speed Dawn gets to her fishing hole, which is 21 miles upstream, in 2 hours. The return trip takes 1.
    8·1 answer
  • Which expression is not equivalent to the other three?
    8·1 answer
  • Lori has 18 new stamps to add to her collection. She displays the stamps on pages of an album in groups of either 3, 6, or 9. Ho
    5·1 answer
  • A baker has a bar of chocolate that weighs 4/6 of a pound. He wants to divide it into portions that weigh 1/4 of a pound. How ma
    10·1 answer
  • I NEED HELP!!! ILL MARK U BRAINLIEST AND GIVE YOU 30 PIONTS
    8·1 answer
  • What is the mean?<br> -1 -1 -4 -5 -4 -4 -7 -8
    9·1 answer
  • What is the volume of a cube whose one side is 5cm​
    9·2 answers
  • You are playing a board game and your playing piece begins the game at START. You roll a single number cube numbered 1 to 6 to f
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!