The answer to your problem is A due to the slope of your line being -1/3x.
You can find this slope by picking two points on your graph [i.e. (-1,3) and (0,0)].
Find the difference between the two points, which is a one for the x value and a three for the y values. Now you have a slope of 1/3.
But wait! The slope is downwards, therefore a negative must be applied to your slope.
This provides you with a slope of -1/3x, therefore:
y = -1/3x
X = first venture, y = second venture, z = third venture
x + y + z = 15,000
x + z = y + 7000
3x + 2y + 2z = 39,000
these are ur equations.....
x + y + z = 15,000
x - y + z = 7000
--------------------add
2x + 2z = 22,000
x + y + z = 15,000....multiply by -2
3x + 2y + 2z = 39,000
-------------------
-2x - 2y - 2z = - 30,000 (result of multiplying by -2)
3x + 2y + 2z = 39,000
------------------add
x = 9,000
2x + 2z = 22,000
2(9000) + 2z = 22000
18,000 + 2z = 22000
2z = 22000 - 18000
2z = 4000
z = 4000/2
z = 2,000
x + y + z = 15,000
9000 + y + 2000 = 15,000
11,000 + y = 15,000
y = 15,000 - 11,000
y = 4,000
first venture (x) = 9,000 <==
second venture (y) = 4,000 <==
third venture (z) = 2,000 <==
13. Is 18
15. Is 86
17 is 5
19 is 15
21 is 24
23 is 29
Answer:I don’t know either
Step-by-step explanation:
Part (i)
I'm going to use the notation T(n) instead of 
To find the first term, we plug in n = 1
T(n) = 2 - 3n
T(1) = 2 - 3(1)
T(1) = -1
The first term is -1
Repeat for n = 2 to find the second term
T(n) = 2 - 3n
T(2) = 2 - 3(2)
T(2) = -4
The second term is -4
<h3>Answers: -1, -4</h3>
==============================================
Part (ii)
Plug in T(n) = -61 and solve for n
T(n) = 2 - 3n
-61 = 2 - 3n
-61-2 = -3n
-63 = -3n
-3n = -63
n = -63/(-3)
n = 21
Note that plugging in n = 21 leads to T(21) = -61, similar to how we computed the items back in part (i).
<h3>Answer: 21st term</h3>
===============================================
Part (iii)
We're given that T(n) = 2 - 3n
Let's compute T(2n). We do so by replacing every copy of n with 2n like so
T(n) = 2 - 3n
T(2n) = 2 - 3(2n)
T(2n) = 2 - 6n
Now subtract T(2n) from T(n)
T(n) - T(2n) = (2-3n) - (2-6n)
T(n) - T(2n) = 2-3n - 2+6n
T(n) - T(2n) = 3n
Then set this equal to 24 and solve for n
T(n) - T(2n) = 24
3n = 24
n = 24/3
n = 8
This means 2n = 2*8 = 16. So subtracting T(8) - T(16) will get us 24.
<h3>Answer: 8</h3>