Answer:
f(x) is positive for all x > 10
Step-by-step explanation:
Given function:

<u>Asymptote</u>
Asymptote: a line which the curve gets infinitely close to, but never touches.
Factor the denominator of the function to find the vertical asymptotes:




Therefore:

The function is undefined when the denominator is equal to zero.
Therefore, there are vertical asymptotes at x = -3 and x = 10
and a horizontal asymptote at y = 0
f(x) is positive for (10, ∞)
f(x) is negative for (-3, 10)
f(x) is positive for (-∞, -3)
we know that a₁ = 1, and aₙ = aₙ₋₁ + 2, is another way of saying, we add 2 to get the next term, namely, 2 is the common difference.
![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\[-0.5em] \hrulefill\\ a_1=1\\ d=2\\ n=7 \end{cases} \\\\\\ a_7=1+(7-1)2\implies a_7=1+12\implies a_7=13](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%0A%5C%5C%5C%5C%0Aa_n%3Da_1%2B%28n-1%29d%5Cqquad%0A%5Cbegin%7Bcases%7D%0An%3Dn%5E%7Bth%7D%5C%20term%5C%5C%0Aa_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%0Ad%3D%5Ctextit%7Bcommon%20difference%7D%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa_1%3D1%5C%5C%0Ad%3D2%5C%5C%0An%3D7%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0Aa_7%3D1%2B%287-1%292%5Cimplies%20a_7%3D1%2B12%5Cimplies%20a_7%3D13)
Find the mean ( average):
105 + 104 + 110 + 112 + 114 + 106 + 108 +109 = 868
Mean = 868 / 8 = 108.5
Standard deviation:
108.5 - 105 = 3.5, 3.5^2 = 12.25
108.5 - 104 = 4, 4^2 = 16
110 - 108.5 = 1.5, 1.5^2 = 2.25
112 - 108.5 = 3.5, 3.5^2 = 12.25
114 - 108.5 = 5.5, 5.5^2 = 30.25
108.5 - 106 = 2.5, 2.5^2 = 6.25
108.5 - 108 = 0.5, 0.5^2 = 0.25
109 - 108.5 = 0.5, 0.5^2 = 0.25
12.25 + 16 +2.25 + 12.25 + 30.25 +6.25+0.25+0.25 = 79.75
79.75/8 = 9.96875, SQRT(9.96875) = 3.1573
Standard Deviation = 3.1573
108.8 +/- 1.96 *(3.1573/sqrt(8) = 110.687 and 106.312
110.687 - 108.5 = 2.19
108.5 - 106.312 = 2.19
Margin of error = +/- 2.19
Answer:
15.26km
Step-by-step explanation:
Con la informacion de la pregunta e hecho un diagrama de la situacion. Podemos ver en el diagrama que el recorido forma un triángulo rectángulo. Entonces para saber la distancia que recorreria por el camino recto desde su casa a su trabajo tendriamos que calcular el valor de x, que se puede calcular usando el teorema de pitagoras que es el siguiente.

donde a y b son el ancho y el alto del triangulo y el c seria x




Finalmente, podemos ver que la distancia seria 15.26km