Step-by-step explanation:
x= -7 y=0
x= -3 y =-6
y =mx+b
b=-7
-6= -3m -7
-3m = 1
m= -1/3
y= -x/3 -7
![y = - \frac{x}{3} - 7](https://tex.z-dn.net/?f=y%20%3D%20%20-%20%20%5Cfrac%7Bx%7D%7B3%7D%20%20-%207)
Answer:
linear equation.
Step-by-step explanation:
Please mark as brainliest
No, because the image can be drawn backwards
In cylindrical coordinates, we have
, so that
![z = \pm \sqrt{2-r^2} = \pm \sqrt{2-x^2-y^2}](https://tex.z-dn.net/?f=z%20%3D%20%5Cpm%20%5Csqrt%7B2-r%5E2%7D%20%3D%20%5Cpm%20%5Csqrt%7B2-x%5E2-y%5E2%7D)
correspond to the upper and lower halves of a sphere with radius
. In spherical coordinates, this sphere is
.
means our region is between two cylinders with radius 1 and
. In spherical coordinates, the inner cylinder has equation
![x^2+y^2 = 1 \implies \rho^2\cos^2(\theta) \sin^2(\phi) + \rho^2\sin^2(\theta) \sin^2(\phi) = \rho^2 \sin^2(\phi) = 1 \\\\ \implies \rho^2 = \csc^2(\phi) \\\\ \implies \rho = \csc(\phi)](https://tex.z-dn.net/?f=x%5E2%2By%5E2%20%3D%201%20%5Cimplies%20%5Crho%5E2%5Ccos%5E2%28%5Ctheta%29%20%5Csin%5E2%28%5Cphi%29%20%2B%20%5Crho%5E2%5Csin%5E2%28%5Ctheta%29%20%5Csin%5E2%28%5Cphi%29%20%3D%20%5Crho%5E2%20%5Csin%5E2%28%5Cphi%29%20%3D%201%20%5C%5C%5C%5C%20%5Cimplies%20%5Crho%5E2%20%3D%20%5Ccsc%5E2%28%5Cphi%29%20%5C%5C%5C%5C%20%5Cimplies%20%5Crho%20%3D%20%5Ccsc%28%5Cphi%29)
This cylinder meets the sphere when
![x^2 + y^2 + z^2 = 1 + z^2 = 2 \implies z^2 = 1 \\\\ \implies \rho^2 \cos^2(\phi) = 1 \\\\ \implies \rho^2 = \sec^2(\phi) \\\\ \implies \rho = \sec(\phi)](https://tex.z-dn.net/?f=x%5E2%20%2B%20y%5E2%20%2B%20z%5E2%20%3D%201%20%2B%20z%5E2%20%3D%202%20%5Cimplies%20z%5E2%20%3D%201%20%5C%5C%5C%5C%20%5Cimplies%20%5Crho%5E2%20%5Ccos%5E2%28%5Cphi%29%20%3D%201%20%5C%5C%5C%5C%20%5Cimplies%20%5Crho%5E2%20%3D%20%5Csec%5E2%28%5Cphi%29%20%5C%5C%5C%5C%20%5Cimplies%20%5Crho%20%3D%20%5Csec%28%5Cphi%29)
which occurs at
![\csc(\phi) = \sec(\phi) \implies \tan(\phi) = 1 \implies \phi = \dfrac\pi4+n\pi](https://tex.z-dn.net/?f=%5Ccsc%28%5Cphi%29%20%3D%20%5Csec%28%5Cphi%29%20%5Cimplies%20%5Ctan%28%5Cphi%29%20%3D%201%20%5Cimplies%20%5Cphi%20%3D%20%5Cdfrac%5Cpi4%2Bn%5Cpi)
where
. Then
.
The volume element transforms to
![dx\,dy\,dz = r\,dr\,d\theta\,dz = \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi](https://tex.z-dn.net/?f=dx%5C%2Cdy%5C%2Cdz%20%3D%20r%5C%2Cdr%5C%2Cd%5Ctheta%5C%2Cdz%20%3D%20%5Crho%5E2%20%5Csin%28%5Cphi%29%20%5C%2C%20d%5Crho%20%5C%2C%20d%5Ctheta%20%5C%2C%20d%5Cphi)
Putting everything together, we have
![\displaystyle \int_0^{2\pi} \int_1^{\sqrt2} \int_{-\sqrt{2-r^2}}^{\sqrt{2-r^2}} r \, dz \, dr \, d\theta = \boxed{\int_0^{2\pi} \int_{\pi/4}^{3\pi/4} \int_{\csc(\phi)}^{\sqrt2} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta} = \frac{4\pi}3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Cint_1%5E%7B%5Csqrt2%7D%20%5Cint_%7B-%5Csqrt%7B2-r%5E2%7D%7D%5E%7B%5Csqrt%7B2-r%5E2%7D%7D%20r%20%5C%2C%20dz%20%5C%2C%20dr%20%5C%2C%20d%5Ctheta%20%3D%20%5Cboxed%7B%5Cint_0%5E%7B2%5Cpi%7D%20%5Cint_%7B%5Cpi%2F4%7D%5E%7B3%5Cpi%2F4%7D%20%5Cint_%7B%5Ccsc%28%5Cphi%29%7D%5E%7B%5Csqrt2%7D%20%5Crho%5E2%20%5Csin%28%5Cphi%29%20%5C%2C%20d%5Crho%20%5C%2C%20d%5Cphi%20%5C%2C%20d%5Ctheta%7D%20%3D%20%5Cfrac%7B4%5Cpi%7D3)