Answer:
0.387
Step-by-step explanation:
Answer:
Step-by-step explanation:
Exact Form:
17/6
Decimal Form:
2.83
Mixed Number Form:
2 5/6
Answer:
There can be 14,040,000 different passwords
Step-by-step explanation:
Number of permutations to order 3 letters and 2 numbers (total 5)
(AAANN, AANNA,AANAN,...)
= 5! / (3! 2!)
= 120 / (6*2)
= 10
For each permutation, the three distinct (English) letters can be arranged in
26!/(26-3)! = 26!/23! = 26*25*24 = 15600 ways
For each permutation, the two distinct digits can be arranged in
10!/(10-2)! = 10!/8! = 10*9 = 90 ways.
So the total number of distinct passwords is the product of all three permutations,
N = 10 * 15600 * 90 = 14,040,000
Answer: 1% red and 3% orange
explanation:
Not sure if its right but did my best!!
The formula for the number of bacteria at time t is 1000 x (2^t).
The number of bacteria after one hour is 2828
The number of minutes for there to be 50,000 bacteria is 324 minutes.
<h3>What is the number of bacteria after 1 hour?
</h3>
The exponential function that can be used to determine the number of bacteria with the passage of time is:
initial population x (rate of increase)^t
1000 x (2^t).
Population after 1 hour : 1000 x 2^(60/40) = 2828
Time when there would be 50,000 bacteria : In(FV / PV) / r
Where:
- FV = future bacteria population = 50,000
- PV = present bacteria population = 1000
- r = rate of increase = 100%
In (50,000 / 1000)
In 50 / 1 = 3.91 hours x 60 = 324 minutes
To learn more about exponential functions, please check: brainly.com/question/26331578
#SPJ1