The values are x=8 and y=35, if the given ΔABC and ΔDEC are equal, it is obtained by Pythagoras theorem.
Step-by-step explanation:
The given are,
From ΔABC,
AB= 6
BC= 10
AC = x
From ΔDEC,
CD= 28
DE= 21
CE = y
Step:1
Pythagoras theorem from ΔABC,
...............(1)
Substitute the values,
=
+ ![AC^{2}](https://tex.z-dn.net/?f=AC%5E%7B2%7D)
100 = 36 + ![AC^{2}](https://tex.z-dn.net/?f=AC%5E%7B2%7D)
= 100 - 36
= 64
AC = ![\sqrt{64}](https://tex.z-dn.net/?f=%5Csqrt%7B64%7D)
AC = 8
AC = x = 8
Step:2
Pythagoras theorem for ΔDEC,
................(2)
From the values,
=
+ ![21^{2}](https://tex.z-dn.net/?f=21%5E%7B2%7D)
= 784 + 441
= 1225
CE = ![\sqrt{1225}](https://tex.z-dn.net/?f=%5Csqrt%7B1225%7D)
CE = 35
CE = y = 35
Result:
The values are x=8 and y=35, if the given ΔABC and ΔDEC are equal.
Answer:
2.5, 5, 7, 8
Step-by-step explanation:
Answer:
for q4 it 3 but q5 ibk.. .............
Answer:
option 3- 5 square root 2
Step-by-step explanation:
![\sin 45° = \frac{BY}{OY} \\ \\ \frac{1}{ \sqrt{2} } = \frac{BY}{10} \\ \\ BY = \frac{10}{ \sqrt{2} } \\ \\ BY = \frac{10 \times \sqrt{2} }{ \sqrt{2} \times \sqrt{2} } \\ \\ BY = \frac{10 \sqrt{2} }{2 } \\ \\ \huge \red{ \boxed{BY = 5 \sqrt{2} }}](https://tex.z-dn.net/?f=%5Csin%2045%C2%B0%20%3D%20%5Cfrac%7BBY%7D%7BOY%7D%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7B1%7D%7B%20%5Csqrt%7B2%7D%20%7D%20%20%3D%20%20%5Cfrac%7BBY%7D%7B10%7D%20%20%5C%5C%20%20%5C%5C%20BY%20%3D%20%20%5Cfrac%7B10%7D%7B%20%5Csqrt%7B2%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20BY%20%3D%20%20%5Cfrac%7B10%20%5Ctimes%20%20%5Csqrt%7B2%7D%20%7D%7B%20%5Csqrt%7B2%7D%20%5Ctimes%20%20%5Csqrt%7B2%7D%20%20%7D%20%20%20%5C%5C%20%20%5C%5C%20BY%20%3D%20%20%5Cfrac%7B10%20%5Csqrt%7B2%7D%20%7D%7B2%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%20%5Chuge%20%5Cred%7B%20%5Cboxed%7BBY%20%3D%20%205%20%5Csqrt%7B2%7D%20%7D%7D)
Answer: $0.20
Step-by-step explanation: $8.4 divided by the 24 or 2 dozen dougnuts she sells means she sell each donut for $0.35 and if we know that Jane Dough sells her doughnuts for $0.15 more than what it costs her to make each doughnut then $0.35 - $0.15 = $0.20 to make each donut