1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
7

Find the Equation Using Two Points (-3,-7) (-1,4)

Mathematics
1 answer:
dexar [7]3 years ago
6 0

Answer:

equation= y-y¹=m(x-x¹)

where m = gradient or slope

slope= <u>y²</u><u>-</u><u>y</u><u>¹</u>

x²-x¹

= <u>4--</u><u>7</u>

-1--3

= <u>4+7</u>

-1+3

= <u>1</u><u>1</u>

2

= 5.5

equation= y-4=5.5(x--1)

= y-4=5.5(x+1)

y-4= 5.5x+5.5

y= 5.5x+5.5+4

y= 5.5x+9.5

You might be interested in
Sandy needs to make 6 bows to put on her presents. She plans to use 18 inches of ribbon for each bow. How much ribbon does Sandy
blondinia [14]
You do 18×6 and you get 108 so the answer is 108in
7 0
3 years ago
11x + 6y = 6 then graph the equation ​
maw [93]

Answer:

Step-by-step explanation:

Use the intercept method of graphing a straight line:

Let x = 0.  We get y = 1.  This is the y-intercept (0, 1).

Let y = 0.  We get x = 6/11.  This is the x-intercept (6/11, 0).

Plot both points and then draw a straight line through them.

6 0
3 years ago
8.618 divided by 0.695
kramer

Answer:

<em>8.618 divided by 0.695</em><em>=</em><em> </em><em>12.4</em>

<em>hope this helps</em><em> </em><em><</em><em>3</em>

7 0
3 years ago
Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:
Stella [2.4K]
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}&#10;{|c|c|c|c|}&#10;Month&Price per Chip&Month&Price per Chip\\[1ex]&#10;January&\$1.90&July&\$1.80\\&#10;February&\$1.61&August&\$1.83\\&#10;March&\$1.60&September&\$1.60\\&#10;April&\$1.85&October&\$1.57\\&#10;May&\$1.90&November&\$1.62\\&#10;June&\$1.95&December&\$1.75&#10;\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
5 0
3 years ago
Two answer left a or b? my mom said a but she not good with math plz help
Sergeu [11.5K]

A would be correct!!!

Glad I could help(:

Can you me with my two questions I recently post?

5 0
3 years ago
Read 2 more answers
Other questions:
  • A hole is drilled in a sheet-metal component, and then a shaft is inserted through the hole. The shaft clearance is equal to dif
    5·1 answer
  • OK GUYS PLEASE HELP: USE THE INFORMATION PROVIDED TO WRITE THE VERTEX FORM EQUATION OF EACH PARABOLA Y=-12X^2+192X-769 EXPLAIN P
    15·1 answer
  • Please help me !! How do I solve this I'm stressed and I'm crying rn because I don't understand it
    5·1 answer
  • The cost of a dinner is divided equally among 12 diners.Each diner pays $12.50 for his or her portion. what was the cost of the
    8·2 answers
  • 0,2,4,0,2,3,2,8,6
    7·2 answers
  • Allen needs to prepare a compound for the patient to pick up tomorrow. He needs to mix of drug A, with of drug B and of drug C.
    5·1 answer
  • 9y= 5/7<br> solve as a fraction
    12·2 answers
  • What is the value of x
    12·1 answer
  • Let f(x) = 5x − 6. Simplify each of the following expressions.
    6·1 answer
  • A cylinder has a surface area of 1,890 m^2 and a radius of 9 cm what is the volume of the cylinder to the whole number
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!