First, let's put the second equation, <span>x-2.23y+10.34=0, in terms of y:
x - 2.23y +10.34 = 0
2.23y = x + 10.34
y = .45x + 4.64
Now we can substitute the right side of this equation for y in the first equation
</span><span>y=2x^2+8x
.45x + 4.64 = 2x^2 + 8x
Turn it into a quadratic by getting 0 on one side:
2x^2 + 8x - .45x - 4.64 = 0
2x^2 + 7.55x - 4.64 = 0 Divide both sides by 2
x^2 + 3.76x - 2.32 = 0
x =( -b +/- </span>√(b² - 4ac) ) / 2a
x =( -3.76 +/- √(14.14 + 9.28)) ÷ 2
x = .54 or -4.31
Plug the x values into y = .45x + 4.64
y = .45 (.54) + 4.64
y = 4.88 when x= .54
y = .45 (-4.31) + 4.64
y = 2.70 when x= -4.31
Solution set:
{ (0.54, 4.88) , (-4.31, 2.70) }
Yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppphoopi yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp
Note: Let us consider, we need to find the gradient of line L.
Given:
The given equation of a line is:

The line L passes through the points with coordinates (- 3, 1) and (2, - 2).
To find:
The gradient of the given line and the gradient of line L.
Solution:
Slope intercept form of a line is:
...(i)
We have,
...(ii)
On comparing (i) and (ii), we get

Therefore, the gradient of the given line is -4.
The line L passes through the points with coordinates (- 3, 1) and (2, - 2). So, the gradient of line L is:




Therefore, the gradient of the line L is
.
point K and J grew up together there like brothers , so I would say they would be the closer duo. Your welcome;)
Hey You!
31% = 0.31 = 0.31 × 575 = 178.25
178 students like mathematics.