Here it issssss #studywell
Answer:
∫ₑ°° 1 / (x (ln x)¹⁰) dx
∫₁°° x⁻³ dx
Step-by-step explanation:
A p-series 1 / xᵖ converges if p > 1.
∫ₑ°° 1 / (x (ln x)¹⁰) dx
If u = ln x, then du = 1/x dx.
When x = e, u = 1. When x = ∞, u = ∞.
= ∫₁°° 1 / (u¹⁰) du
p = 10, converges
∫₁₀°° x^(-⅔) dx
= ∫₁₀°° 1 / (x^⅔) dx
p = ⅔, diverges
∫₁°° 2 / x^0.5 dx
= 2 ∫₁°° 1 / x^0.5 dx
p = 0.5, diverges
∫₁°° x⁻³ dx
= ∫₁°° 1 / x³ dx
p = 3, converges
∫₂°° 1/(3x) dx
= ⅓ ∫₂°° 1/x dx
p = 1, diverges