Answer:
Rock D.
Step-by-step explanation:
We can assume that the force that the catapult does is always the same.
So, here we need to remember Newton's second law:
F = m*a
force equals mass times acceleration.
Where acceleration is the rate of change of the velocity.
So, if we want the rock to hit closer to the catapult, the rock must be less accelerated than rock B.
So, we can rewrite:
a = F/m
So, as larger is the mass of the rock, smaller will be the acceleration of the rock after it leaves the catapult (because the mass is in the denominator). So if we want to have a smaller acceleration, we need to choose a rock with a larger mass than rock B.
Assuming that the mass depends on the size, the only one that has a mass larger than rock B is rock D.
So we can assume that rock D is the correct option.
Answer:
1400
Step-by-step explanation:
hope that helps <3
This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>
Answer:
36 π square feet
Step-by-step explanation:
so the formula for area of a circle is πr^2
so the radius is 6, which we can just plug in
π(6)^2
36π
so option 3