Given:
A(16, 4)
B(34, 40)
Line segment AB partition in the ratio 1 : 5.
To find:
The coordinate of a point that partitions AB.
Solution:
Section formula:

Here
and m = 1, n = 5




The coordinate of point that partitions the segment AB is (19, 10).
Given :-
- y varies directly as x, and y=14 when x=4.
To Find :-
- the value of y when x=9 .
Solution :-
<u>A</u><u>c</u><u>c</u><u>o</u><u>r</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>o</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>,</u>
<u>When</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>1</u><u>4</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>4</u><u> </u><u>,</u>
<u>W</u><u>h</u><u>e</u><u>n</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>,</u>
- y = 7/2*9
- y = 63/2
- y = 31.5
Answer:
I can only read the top 2 dimensions:
The one on the left is 32 ft^2, the one on the right is 31 ft^2
Step-by-step explanation:
left top: (8x5)-(2x4) = 32
right top: (8x4)-(1x1) = 31
left low: (10x?)-(4x7) = ?
right low: (8x?)-(2x6) = ?
0
You compare the degrees of the numerator and the denominator.
The numerator has a degree of 0 and the denominator has a degree of 1.
Since the numerator < denominator the degree is 0.