Answer:
a. 0.71
b. 0.9863
Step-by-step explanation:
a. From the histogram, the relative frequency of houses with a value less than 500,000 is 0.34 and 0.37
-#The probability can therefore be calculated as:

Hence, the probability of the house value being less than 500,000 is o.71
b.
-From the info provided, we calculate the mean=403 and the standard deviation is 278 The probability that the mean value of a sample of n=40 is less than 500000 can be calculated as below:

Hence, the probability that the mean value of 40 randomly selected houses is less than 500,000 is 0.9863
7x² = 9 + x Subtract x from both sides
7x² - x = 9 Subtract 9 from both sides
7x² - x - 9 = 0 Use the Quadratic Formula
a = 7 , b = -1 , c = -9
x =

Plug in the a, b, and c values
x =

Cancel out the double negative
x =

Square -1
x =

Multiply 7 and -9
x =

Multiply -4 and -63
x =

Multiply 2 and 7
x =

Add 1 and 252
x =

Split up the

x =

The approximate square root of 253 is <span>15.905973.
</span>x ≈

Add and subtract
x ≈

Divide
x ≈

Round to the nearest hundredth
x ≈

<span>
</span>
I don’t see a point so how am I supposed to answer
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Edited answer: The number is: "- 6" .
_______________________________________________
8 (8 + x) = 16 ;
in which "x" represents the number for which to be solved ;
8*8 + 8*x = 16 .
Edit: 64 + 8x = 16 ;
Subtract "64" from each side of the equation:
Edit: 64 + 8x − 64 = 16 <span>− 64 ;
to get: 8x = </span>- 48 ;
Divide EACH SIDE of the equation by "8" ; to isolate "x" on one side of the <span>equation ; and</span> to solve for "x" ;
Edit: 8x / 8 = -48 / 8 ;
Edit: x = - 6 .
______________________________________________
The number is: "- 6" .
______________________________________________
Let us check our answer, by plugging in "-6" for "x" in the original equation:
______________________________________________
8 (8 + x) = 16 ;
→ 8 [8 + (-6) ] =? 16 ?? ;
→ 8 (8 − 6 ) =? 16 ?? ;
→ 8 (2) =? 16 ?? ;
→ 16 = ? 16 ?? Yes!
_________________________________________________