X=3 is the awnser for this problem
The values of x at wich F(x) has local minimums are x = -2 and x = 4, and the local minimums are:
<h3>
What is a local maximum/minimum?</h3>
A local maximum is a point on the graph of the function, such that in a close vicinity it is the maximum value there. So, on an interval (a, b) a local maximum would be F(c) such that:
c ∈ (a, b)
F(c) ≥ F(x) for ∀ x ∈ [a, b]
A local minimum is kinda the same, but it must meet the condition:
c ∈ (a, b)
F(c) ≤ F(x) for ∀ x ∈ [a, b]
A) We can see two local minimums, we need to identify at which values of x do they happen.
The first local minimum happens at x = -2
The second local minimum happens at x = 4.
B) The local minimums are given by F(-2) and F(4), in this case, the local minimums are:
If you want to learn more about minimums/maximums, you can read:
brainly.com/question/2118500
Answer:
108
Step-by-step explanation:
Given that Joseph has 48 comic books.
As he sold 1/4 of his collection to his friend, so
The number of books, Josef sold = 1/4 x 48 = 12.
The number of remaining books, Josef has = 48 - 12 = 36.
As he brought twice the number of comic books as he has now, so,
the number of comic books, Josef brought = 2 x 36 = 72.
Now, total number of comic books, Josef has = 36 + 72 = 108.
I'm reading this as

with

.
The value of the integral will be independent of the path if we can find a function

that satisfies the gradient equation above.
You have

Integrate

with respect to

. You get


Differentiate with respect to

. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)


Integrate both sides with respect to

to arrive at



So you have

The gradient is continuous for all

, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is
__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)____φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)v__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)