Answer:
If the roots of an equation are x = -1 ± i, it means that the factorized form of that equation is: (x + 1 + i)(x+ 1 - i) = 0.
Using the distributive property, we have:
(x + 1 + i)(x+ 1 - i) = x^2 + x - ix + x + 1 - i + ix + i + 1
Combining like-terms and simplifying:
⇒ x^2 + x + x + 1 + 1 = x^2 + 2x + 2 = 0
Therefore, the stament is correct. If the roots of an equation are x = -1 ± i, then the equation is: x^2 + 2x + 2 = 0.
Answer is <span>3:5=12:20
3x4 = 12
5x4 = 20
so
</span><span>3:5=12:20</span>
Answer:
The equivalent expression should be
.
Step-by-step explanation:
Solve the expression:





So, the answer is
.
Answer: p(x) = 8.7x - 1940
p(500) = $2410
p(1000) = $6760
p(5000) = $41,560
<u>Step-by-step explanation:</u>
p(x) = r(x) - c(x)
= 9.5x - (0.8x + 1940)
= 9.5x - 0.8x - 1940
= 8.7x - 1940
**********************************************************************
p(500) = 8.7(500) - 1940
= 4350 - 1940
= 2410
p(1000) = 8.7(1000) - 1940
= 8700 - 1940
= 6760
p(5000) = 8.7(5000) - 1940
= 43,500 - 1940
= 41,560
***************************************************************************
p(500) = r(500) - c(500)
= 9.5(500) - [0.8(500) + 1940]
= 4750 - (400 + 1940)
= 4750 - 2340
= 2410
p(1000) = r(1000) - c(1000)
= 9.5(1000) - [0.8(1000) + 1940]
= 9500 - (800 + 1940)
= 9500 - 2740
= 6760
p(5000) = r(5000) - c(5000)
= 9.5(5000) - [0.8(5000) + 1940]
= 47500 - (4000 + 1940)
= 47500 - 5940
= 41,560