The answer is A) -4/25 because when you multiply 8/15 and -3/10, you can simplify the expression to 4/5 times -1/5, which equals -4/25.
Answer:
x=5
Step-by-step explanation:
According to SSS, RPS and RPQ should be similar angles. Since the length RP is the same, then RQP and RSP should be similar too. Therefore PRS and PRQ should be similar too. Since QP and RS are the same (7) then QR and PS needs to be same in length too.
2x+3 = 4x-7
10 = 2x
x=5
(a²-6)(a²-4) simplify
a⁴-4a²-6a²+24
Combine like terms
a⁴-10a²+24
Answer:
B
Step-by-step explanation:
too easy
1) To find the confidence interval
the sample mean x = 38 σ = 9; n = 85;
The confidence level is 95% (CL = 0.95) <span>CL = 0.95
so α = 1 – CL = 0.05
</span><span>α/2 = 0.025 </span>Z(α/2) = z0.025
The area to the right of Z0.025 is 0.025 and the area to the left of Z0.025 is 1 – 0.025 = 0.975
Z(α/2) = z0.025 = 1.645 This can be found using a computer, or using a probability table for the standard normal distribution.
<span>EBM = (1.645)*(9)/(85^0.5)=1.6058</span> x - EBM = 38 – 1.6058 = 36.3941 <span> x + EBM = 38 + 1.6058 = 39.6058
</span>The 95% confidence interval is (36.3941, 39.6058).
The answer is the letter D
<span>The value of 40.2 is <span>within the 95% confidence interval for the mean of the sample
</span></span>2) To find the confidence interval <span>
<span>the sample mean x = </span>76 σ = 20; n = 102; </span><span>
The confidence level is 95% (CL = 0.95) CL = 0.95
so α = 1 – CL = 0.05
α/2 = 0.025 Z(α/2) = z0.025
The area to the right of Z0.025 is 0.025 and the area to the
left of Z0.025 is 1 – 0.025 = 0.975
Z(α/2) = z0.025 = 1.645 This can be found using a computer,
or using a probability table for the standard normal distribution.
EBM = (1.645)*(20)/(102^0.5)=3.2575 x - EBM = 76 – 3.2575 = 72.7424 </span> x +
EBM = 76 + 3.2575 = 79.2575 <span>
The 95% confidence interval is (</span>72.7424 ,79.2575).<span>
The answer is the letter </span>A
and the letter D<span>
The value of 71.8 and 79.8 <span> are </span> outside<span>
the 95% confidence interval for the mean of the sample</span></span>