Jonah is the one that is correct because 1/6th of 1248 is 208. Then you add 1248 and 208 which is 1456 which is the correct answers
Answer:

or

Step-by-step explanation:
The expression
can be simplified by first writing the fraction under one single radical instead of two.

5/15 simplifies because both share the same factor 5.
It becomes 
This can simplify further by breaking apart the radical.

A radical cannot be left in the denominator, so rationalize it by multiplying by √3 to numerator and denominator.

Answer:
#1 = 234
:)
Step-by-step explanation:
340 × .2 = 68
68 page decrease
340 - 68 = 272
272 pages left