<span>et us assume that the origin is the floor right below the 30 ft. fence
To work this one out, we'll start with acceleration and integrate our way up to position.
At the time that the player hits the ball, the only force in action is gravity where: a = g (vector)
ax = 0
ay = -g (let's assume that g = 32.8 ft/s^2. If you use a different value for gravity, change the numbers.
To get the velocity of the ball, we integrate the acceleration
vx = v0x = v0cos30 = 103.92
vy = -gt + v0y = -32.8t + v0sin40 = -32.8t + 60
To get the positioning, we integrate the speed.
x = v0cos30t + x0 = 103.92t - 350
y = 1/2*(-32.8)t² + v0sin30t + y0 = -16.4t² + 60t + 4
If the ball clears the fence, it means x = 0, y > 30
x = 0 -> 103.92 t - 350 = 0 -> t = 3.36 seconds
for t = 3.36s,
y = -16.4(3.36)^2 + 60*(3.36) + 4
= 20.45 ft
which is less than 30ft, so it means that the ball will NOT clear the fence.
Just for fun, let's check what the speed should have been :)
x = v0cos30t + x0 = v0cos30t - 350
y = 1/2*(-32.8)t² + v0sin30t + y0 = -16.4t² + v0sin30t + 4
x = 0 -> v0t = 350/cos30
y = 30 ->
-16.4t^2 + v0t(sin30) + 4 = 30
-16.4t^2 + 350sin30/cos30 = 26
t^2 = (26 - 350tan30)/-16.4
t = 3.2s
v0t = 350/cos30 -> v0 = 350/tcos30 = 123.34 ft/s
So he needed to hit the ball at at least 123.34 ft/s to clear the fence.
You're welcome, Thanks please :)
</span>
Answer:
a) 122.5 m ; b) 10 s
Step-by-step explanation:
Just use the given equation and plug in what you know.
a)
d = 4.9t^2
d = 4.9(5^2)
d = 4.9 * 25
d = 122.5 m
b)
d = 4.9t^2
490 = 4.9t^2
100 = t^2
t = 10 s
Answer:
Step-by-step explanation:
<em>Cylinder volume formula: V= πr²h</em>
<u>Given</u>
<u>Volume of soup pod</u>
- V = 3.14*6²*15 = 1695.6 in³
Answer:
You know that negative 3 1/2 is the lowest number so you would put that first. The greatest number would be the coldest in Celsius, and 1/20 would be the last question (the sea level) if calculations are correct, you would get full credit.
The determined value of mean µ is 1.3 and variance σ² is 0.81.
What is mean and variance?
- A measurement of central dispersion is the mean and variance. The average of a group of numbers is known as the mean.
- The variance is calculated as the square root of the variance.
- We can determine how the data we are collecting for observation are dispersed and distributed by looking at central dispersion.
The table is attached as an image for reference.
Mean µ = ∑X P(X)
µ = 1.3
Variance (σ² ) = ∑ X² P(X)- (µ)²
= 2.5-(1.3)²
(σ² ) = 0.81
The determined value of mean µ is 1.3 and variance σ² is 0.81.
Learn more about mean and variance here:
brainly.com/question/25639778
#SPJ4