Solution:
<u>Pythagoras theorem can only be used in:</u>
- <em>Right triangles</em>
- <em>Scalene right triangles</em>
- <em>Isosceles right triangles. </em>
<em>Since this is a </em><em>scalene right triangle</em><em>, we can use </em><u><em>Pythagoras theorem</em></u><em> to solve the missing length of the triangle. </em>
- <em>=> The formula for </em><u><em>Pythagoras theorem</em></u><em> is </em><em>a² + b² = c².</em>
<u>Finding a, b, and c:</u>
- <em>Let </em><em>"a"</em><em> be </em><em>12 cm</em><em> and </em><em>"b"</em><em> be </em><em>"t" cm.</em>
- <em>"c" </em><em>is the </em><em>largest side</em><em> of the triangle. This means that </em><em>"c" </em><em>is </em><em>15 cm</em><em>, as it is the </em><em>largest side</em><em> of the triangle. </em>
<u>Setting up the equation:</u>
- a² + b² = c²
- => 12² + t² = 15²
<u>Simplifying the squares:</u>
- => (12)(12) + t² = (15)(15)
<u>Subtracting (12)(12) both sides:</u>
- => t² = -(12)(12) + (15)(15)
- => t² = -144 + 225
- => t² = 81
<u>Taking a square root both sides:</u>
<em>Since the length cannot be negative, the value of t must be positive.</em>
<u>The final answer is...</u>