1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
12

PLS HELP

Mathematics
1 answer:
Paladinen [302]3 years ago
4 0

Answer and Explanation:

See attached image.

You might be interested in
Math help for this question
dalvyx [7]

Answer:

im sorry i dont know but this is for a challenge sorry

Step-by-step explanation:

4 0
3 years ago
Factorise: x^2/y^2+1+y^2/X^2​
rewona [7]

Answer:

<h2>( \frac{x}{y}  +  \frac{y}{x}  + 1)( \frac{x}{y}  +  \frac{y}{x}  - 1)</h2>

Step-by-step explanation:

Hope it is helpful.....

7 0
3 years ago
I need to know how to get the answer and what the answer is
Vedmedyk [2.9K]
(Can't really explain it... hopefully these steps can help you.. maybe I'm just too lazy..)

2h^3j^-3k^4
-----------------
3jk

2h^3k^4
= -------------
3j^4k


2h^3k^3
= --------------
3j^4
8 0
4 years ago
Juana went shopping with $ 50 and spent $ 45. What percentage of her money did she spend?
Ugo [173]

Answer: 90%

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
A particle moving in a planar force field has a position vector x that satisfies x'=Ax. The 2×2 matrix A has eigenvalues 4 and 2
andrey2020 [161]

Answer:

The required position of the particle at time t is: x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

Step-by-step explanation:

Consider the provided matrix.

v_1=\begin{bmatrix}-3\\1 \end{bmatrix}

v_2=\begin{bmatrix}-1\\1 \end{bmatrix}

\lambda_1=4, \lambda_2=2

The general solution of the equation x'=Ax

x(t)=c_1v_1e^{\lambda_1t}+c_2v_2e^{\lambda_2t}

Substitute the respective values we get:

x(t)=c_1\begin{bmatrix}-3\\1 \end{bmatrix}e^{4t}+c_2\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}

x(t)=\begin{bmatrix}-3c_1e^{4t}-c_2e^{2t}\\c_1e^{4t}+c_2e^{2t} \end{bmatrix}

Substitute initial condition x(0)=\begin{bmatrix}-6\\1 \end{bmatrix}

\begin{bmatrix}-3c_1-c_2\\c_1+c_2 \end{bmatrix}=\begin{bmatrix}-6\\1 \end{bmatrix}

Reduce matrix to reduced row echelon form.

\begin{bmatrix} 1& 0 & \frac{5}{2}\\ 0& 1 & \frac{-3}{2}\end{bmatrix}

Therefore, c_1=2.5,c_2=1.5

Thus, the general solution of the equation x'=Ax

x(t)=2.5\begin{bmatrix}-3\\1\end{bmatrix}e^{4t}-1.5\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}

x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

The required position of the particle at time t is: x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

6 0
3 years ago
Other questions:
  • Subtract x/x^2-36-6/x^2-36
    8·2 answers
  • On a coordinate plane, the x-axis is labeled minutes and the y-axis is labeled Blocks. Line A goes through points (10, 4), (15,
    12·2 answers
  • Help plz ☝️☝️☝️☝️☝️☝️☝️
    5·1 answer
  • How do i get a equation that equals 24 using the numbers 8 3 5 and 1 with a 24 card using multiplication negative times division
    7·2 answers
  • Which one represents the equation log3 81 = 4 in exponential form?
    5·2 answers
  • The store manager of Price Chopper wants to put two cereal box displays side by side. Each of the displays will be constructed w
    11·1 answer
  • 15 points plz help
    13·1 answer
  • #10 Please answer the question
    11·1 answer
  • (8 - h)(jh + jh) use h=-1 and j=5<br><br> I would do this but im kind of confused please help
    11·1 answer
  • Whats 2 +2 +2 +2 +2 +2 +15,862​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!