So what we have to do to solve this problem is to write down those values in 2 equations (one that represents what you sold and the other what your friend sold) compare them and find how much each ticket is worth.
First equation : 11x + 8y = 158
Where x = how much each adult ticket is
and y = how much each student ticket is
The second equation is : 5x + 17y = 152
Using the method of substitution , we can compare each equation side by side:
11x + 8y = 158
5x + 17y = 152
Now we need to set one of the variables of both equations so they are equal:
11(5)x + 8(5) = 158(5)
5(11)x + 17(11)x = 152(11)
55x + 40y = 790
55x + 187y = 1672
Then we subtract the second equation by the first one
55x-55x + 187y - 40y = 1672 - 790
147y = 882
y = 6
The we apply y to one of the equations to discover x :
11x + 8y = 158
11x + 8(6) = 158
11x + 48 = 158
11x = 110
x = 10
So the awnser is :
Each adult ticket (x) is $10
And each student ticket (y) is $8
I hope you understood my explanation,
You put 3 shapes together I believe
Answer:
(8,5)
Step-by-step explanation:
5x-2y=30
lets substitute "8" as x and see where that takes us
5(8)-2y=30
40-2y=30
subtract 40 on both sides
-2y=-10
divide by "-2" on both sides
y=5
(8,5) is your answer
Answer:

b = (T - a - c - d) / 3
Step-by-step explanation:
Let T be the total number of points required to advance.
a, c and d are points scored in the local matches, and b is the number of points scored in the district match. If b is worth 3 times as much as the other matches, the total number of points is given by:

Isolate b in order to find out how many points they need in the district match:

They need to score (T - a - c - d)/3, in the district match in order to win.