Side lengths: RS=7 and ST=7, and angle=90 degrees
Why?
Since second coordinates of R and S are the same so we can just count the length by adding first coordinate of R and first coordinate of S= |-3|+4=7
Since first coordinates of R is the same as first coordinate of T so we can just count the length by adding second coordinates of S and T=5+|-2|=7
Angle: RST is =90 degrees because triangle RST is right angled triangle. Why? Because RS is parallel to X axis(the same second coordinates of R and S) and ST is parallel to Y axis(the same coordinates of S and T) .

<h2><em><u>Hello</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>sorry</u></em><em><u> </u></em><em><u>but</u></em><em><u> </u></em><em><u>it</u></em><em><u>'</u></em><em><u>s</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>Gatheted</u></em><em><u> </u></em><em><u>Question</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>fix</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u>?</u></em><em><u> </u></em></h2>
<em><u>Sorry</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>answering</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nonsense</u></em><em><u> </u></em>
<u>#BrainliestBunch</u>
Answer:
3.42
Step-by-step explanation:
41/12 is 3.42
Answer:
μ = 5.068 oz
Step-by-step explanation:
Normal distribution formula to use the table attached
Z = (x - μ)/σ
where μ is mean, σ is standard deviation, Z is on x-axis and x is a desired point.
98% of 6-oz. cups will not overflow means that the area below the curve is equal to 0.49; note that the curve is symmetrical respect zero, so, 98% of the cases relied between the interval (μ - some value) and (μ + some value)].
From table attached, area = 0.49 when Z = 2.33. From data, σ = 0.4 oz and x = 6 oz (maximum capacity of the cup). Isolating x from the formula gives
Z = (x - μ)/σ
2.33 = (6 - μ)/0.4
μ = 6 - 2.33*0.4
μ = 5.068
This means that with a mean of 5 oz and a standard deviation of 0.4 oz, the machine will discharge a maximum of 6 oz in the 98% of the cases.